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Abstract
The	resurrection	approach	is	a	powerful	tool	for	estimating	phenotypic	evolution	in	
response	to	global	change.	Ancestral	generations,	revived	from	dormant	propagules,	
are	 grown	 side	 by	 side	 with	 descendent	 generations	 in	 the	 same	 environment.	
Phenotypic	differences	between	the	generations	can	be	attributed	to	genetic	change	
over	time.	Project	Baseline	was	established	to	capitalize	on	this	potential	in	flowering	
plants.	Project	participants	collected,	froze,	and	stored	seed	from	10	or	more	natural	
populations	of	61	North	American	plant	species.	These	will	be	made	available	in	the	
future	for	resurrection	experiments.	One	problem	with	this	approach	can	arise	if	non-
random	mortality	during	 storage	biases	 the	estimate	of	 ancestral	mean	phenotype,	
which	in	turn	would	bias	the	estimate	of	evolutionary	change.	This	bias—known	as	the	
“invisible	fraction”	problem—can	arise	if	seed	traits	that	affect	survival	during	storage	
and	revival	are	genetically	correlated	to	postemergence	traits	of	interest.	The	bias	is	
trivial	 if	seed	survival	 is	high.	Here,	 I	 show	that	with	 low	seed	survival,	bias	can	be	
	either	trivial	or	catastrophic.	Serious	bias	arises	when	(i)	most	seeds	deaths	are	selec-
tive	with	regard	to	the	seed	traits,	and	(ii)	the	genetic	correlations	between	the	seed	
and	postemergence	 traits	are	strong.	An	 invisible	 fraction	bias	can	be	diagnosed	 in	
seed	collections	 that	 are	 family	 structured.	A	 correlation	between	 the	 family	mean	
survival	rate	and	the	family	mean	of	a	focal	postemergence	trait	indicates	that	seed	
mortality	was	not	random	with	respect	to	genes	affecting	the	focal	trait,	biasing	the	
sample	mean.	Fortunately,	family	structure	was	incorporated	into	the	sampling	scheme	
for	the	Project	Baseline	collection,	which	will	allow	bias	detection.	New	and		developing	
statistical	procedures	that	can	incorporate	genealogical	information	into	the	analysis	
of	resurrection	experiments	may	enable	bias	correction.
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1  | INTRODUCTION

Global	 change,	 including	 shifting	 land	 use,	 species	 translocations	
among	 continents,	 rising	 atmospheric	 CO2,	 and	 warming	 climate	
(Vitousek,	1994),	will	likely	drive	evolutionary	change	in	many	species	

during	this	century	(Davis	&	Shaw,	2001;	Thomas	et	al.,	2001;	Franks	
&	Hoffmann,	2012).	 Several	 adaptive	evolutionary	 responses	 to	an-
thropogenic	 change	 have	 already	 been	 documented	 (e.g.,	 Carroll,	
Klassen,	&	Dingle,	1998;	Réale,	McAdam,	Boutin,	&	Berteaux,	2003;	
Levitan	&	Etges,	2005;	Colautti	&	Barrett,	2013).
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To	 date,	 serendipity	 has	 ruled	 in	 studies	 detecting	 evolutionary	
response	 to	 climate	 shift.	 Peter	 and	Rosemary	Grant	were	 studying	
bird	ecology	when	by	chance	a	severe	drought	altered	food	resources,	
spurring	evolution	of	the	finch’s	beak	(Grant	&	Grant,	2002).	Umina,	
Weeks,	Kearney,	McKechnie,	and	Hoffmann	(2005)	could	demonstrate	
allelic	shifts	in	loci	associated	with	Drosophila	thermal	tolerance,	and	
Bradshaw	and	Holzapfel	(2008)	could	show	a	shortening	of	the	critical	
photoperiod	 for	mosquito	 diapause,	 because	 these	 research	 groups	
had	solidly	established	the	clinal	variation	in	these	traits	more	than	a	
decade	before	climate	change	became	a	research	focus.	Steven	Franks,	
Shiena	Sims,	and	I	showed	accelerated	flowering	time	in	field	mustard	
(Brassica rapa)	after	prolonged	drought,	using	the	“resurrection	para-
digm”	(Franks,	Sim,	&	Weis,	2007).	This	experiment	was	possible	only	
because	several	years	prior	to	the	drought,	Denise	Franke	Kind	(Franke	
et	al.,	2006)	fortuitously	stored	the	excess	seed	she	collected	(for	an	
unrelated	project)	under	conditions	that	preserved	viability.

Project Baseline	 (Franks	 et	al.,	 2008;	 Franks,	 Hamann,	 &	 Weis,	
2017;	Etterson	et	al.,	2016)	was	established	to	move	the	exploration	
of	plant	evolutionary	response	to	global	change	beyond	serendipity.	
This	collaborative	effort	has	collected	and	stored	seed	from	contem-
porary	populations	of	61	species.	One	to	two-	hundred	maternal	sib-
ships	have	been	collected	from	each	of	10	or	more	populations	per	
species	across	their	geographic	ranges.	These	seeds	are	being	stored	
in	 conditions	 expected	 to	maintain	 their	 viability	well	 into	 the	 sec-
ond	 half	 of	 this	 century.	This	 collection	 and	 storage	 phase	was	 im-
plemented	between	2013	and	2016.	The	payoff	for	this	initial	effort	
will	come	only	in	future	years.	Researchers	who	collect	seed	from	the	
same	populations	can	withdraw	ancestral	seed	from	the	collection	to	
do	resurrection	experiments.

The	resurrection	approach	is	a	very	powerful	way	to	study	pheno-
typic	evolution.	Dormant	propagules	produced	by	an	ancestral	gener-
ation	are	revived	and	grown	side	by	side	with	propagules	from	a	more	
recent	generation.	Because	both	generations	develop	in	the	same	en-
vironment,	phenotypic	differences	between	them	can	be	attributed	to	
evolutionary	(genetic)	change	over	time.	Richard	Lenski	and	associates	
have	applied	it	in	their	ongoing	evolution	experiment	with	Escherichia 
coli,	 where	 they	 have	 measured	 evolutionary	 rates,	 uncovered	 the	
physiological	 basis	 of	 adaptation,	 and	 examined	 the	 contingency	 of	
evolutionary	trajectories	(Lenski,	Rose,	Simpson,	&	Tadler,	1991;	Elena,	
Cooper,	&	Lenski,	1996;	Blount,	Borland,	&	Lenski,	2008).

Resurrection	experiments	have	documented	adaptive	evolution	in	
natural	populations	as	well.	Using	Daphnia galeata	hatched	from	rest-
ing	eggs	retrieved	from	sediments	in	Lake	Constance,	Hairston	et	al.	
(1999)	found	an	increase,	followed	by	a	decrease,	in	resistance	to	toxic	
cyanobacteria	between	the	1960s	and	1990s,	matching	the	rise	and	
fall	of	lake	eutrophication.	Frisch	et	al.	(2014)	examined	adaptation	to	
eutrophication	by	Daphnia pulicaria	using	clones	resurrected	from	sed-
iments	as	old	as	700	years.	Changes	in	Daphnia	behavior	in	response	
to	shifting	predation	risk	have	also	been	detected	by	comparing	con-
temporary	to	resurrected	clones	(Cousyn	et	al.,	2001).	Plants	too	have	
been	the	subject	of	several	recent	resurrection	experiments	(Bustos-	
Segura,	 Fornoni,	 &	 Nunez-	Farfan,	 2014;	 Nevo	 et	al.,	 2012;	 Sultan,	
Horgan-	Kobelski,	Nichols,	Riggs,	&	Waples,	2013;	Thomann,	 Imbert,	

Engstrand,	&	Cheptou,	2015).	With	the	first	release	of	Project	Baseline	
seeds	 scheduled	 for	2018,	 it	 is	 important	 to	 consider	potential	 lim-
itations	 and	pitfalls	 to	 experiments	 that	 attempt	 to	 revive	 ancestral	
genotypes.

1.1 | Confronting caveats

Though	powerful,	the	resurrection	approach	is	subject	to	three	biases	
(Bennington	&	McGraw,	1995).	The	first	is	caused	when	differences	
in	the	collection	protocol	for	the	two	generations	select	different	sets	
of	genotypes.	For	example,	ancestral	generation	seeds	collected	from	
the	wet	 side	of	 the	meadow	may	be	 genetically	 different	 from	de-
scendants	collected	from	the	dry	side,	but	that	difference	could	be	en-
tirely	due	to	local	adaptation	at	the	microgeographic	level	and	not	due	
to	evolutionary	change	across	time.	Similarly,	differences	in	the	timing	
of	collection	relative	to	seed	maturation	could	distort	the	true	level	of	
genetic	change	in	phenology	between	generations.	Consideration	of	
these	issues	in	the	sampling	design	can	ameliorate	this	concern	(see	
Franks	et	al.,	2017).

A	second	bias	can	arise	when	propagules	from	the	ancestral	and	
descendent	generations	have	been	produced	and	stored	under	differ-
ent	conditions,	triggering	plastic	responses	in	postemergence	pheno-
types	 (Rogalski,	 2015).	These	 effects	 can	 be	 ameliorated	by	 rearing	
the	 propagules	 in	 a	 common	 environment	 for	 one	 or	more	 genera-
tions	 before	 estimating	 phenotypic	 divergence	 (e.g.,	 Hairston	 et	al.,	
1999).	 These	 “refresher	 generations”	 can	 also	 be	 used	 to	 produce	
	intergenerational	hybrids,	which	can	reveal	genetic	features	of	change	
(Franks	et	al.,	2007).	Several	refresher	generations	may	be	required	to	
eliminate	epigenetic	modifications.	Great	care	must	be	taken	to	avoid	
unintentional	 selection	 during	 the	 refresher	 generations.	 Breeding	
protocols	that	ensure	equal	contributions	of	all	individuals,	male	and	
female,	to	each	subsequent	generation	can	all	but	eliminate	the	op-
portunity	 for	 selection.	 When	 study	 species	 have	 long	 generation	
times,	refresher	generations	can	be	impractical,	and	so	results	need	to	
be	interpreted	with	caution.

In	 a	 similar	vein,	 loss	 of	 symbionts	 during	 storage	 could	 lead	 to	
phenotypic	differences	between	ancestors	and	descendants.	Cheplick	
(2017)	 found	 25%	 to	 40%	 of	 Lolium perenne	 seeds	 revived	 after	
22	years	of	storage	no	longer	harbored	the	beneficial	endophytic	fungi	
are	typically	inherited	maternally.	In	such	a	case,	re-	infection	during	a	
refresher	generation	would	be	indicated	for	a	fair	test	of	evolutionary	
change.

This	 article	will	 focus	 on	 the	 third	 potential	 bias	 in	 resurrection	
experiments	 that	 arising	 from	 nonrandom	 mortality	 of	 ancestors	
during	storage	(Bennington	&	McGraw	1995).	Suppose	a	variable	trait	
expressed	in	the	propagule	affects	its	chance	of	surviving	prolonged	
storage.	If	that	propagule	trait	is	genetically	correlated	to	a	focal	poste-
mergence	 trait	 (e.g.,	 growth	 rate,	 specific	 leaf	 area,	 flowering	 date),	
the	genotypes	emerging	from	storage	will	be	a	nonrandom	sample	of	
those	that	went	in.	This	will	bias	the	estimated	ancestral	mean	of	the	
focal	trait,	which	is	the	baseline	for	estimating	evolutionary	change.

Grafen	 (1988)	 called	 this	 the	 problem	 of	 the	 “invisible	 frac-
tion”.	Net	 selection	on	 loci	underlying	a	 late-	life	 trait	will	be	under/



     |  3WEIS

overestimated	 if	 effects	 of	 those	 loci	 on	 early-	life	 survival	 are	 not	
taken	into	account	(Bennington	&	McGraw,	1995;	Brommer,	Merilä,	&	
Kokko,	2002).	Similar	biases	arise	in	estimates	of	quantitative	genetic	
variances	and	covariances	 if	no	accounting	 is	made	 for	 the	 invisible	
fraction	(Hadfield,	2008;	Nakagawa	&	Freckleton,	2008;	Kruuk,	Slate,	
&	Wilson,	2008).

Genetic	 variation	 in	 the	 ability	 to	 survive	 storage	 could	 lead	 to	
an	invisible	fraction	bias	when	resurrecting	the	Project	Baseline	col-
lection.	Accessions	 for	 the	 61	 species	 have	 been	 dried	 to	 20%	RH	
and	 stored	 at	 −20°C	 at	 the	National	 Center	 for	 Genetic	 Resources	
Preservation	(Etterson	et	al.,	2016).	These	are	the	conventional	stor-
age	conditions	used	by	gene	banks	for	preserving	agronomic	species,	
and	they	are	expected	to	maintain	seed	viability	for	50	to	400	years	
(FAO	 2013).	 Some	 wild	 species,	 however,	 have	 poorer	 desiccation	
and/or	freezing	tolerance	than	cultivars	(Walters,	2015),	and	so	their	
longevity	under	 storage	 could	be	 shorter.	The	61	 target	 species	 for	
Project	Baseline	were	identified	as	good	candidates	for	storage.	But,	
what	if	upon	resurrection	the	germination	rate	among	the	stored	an-
cestors	is	lower	than	the	freshly	collected	descendants?	How	strongly	
could	this	bias	the	baseline	for	estimating	phenotypic	evolution?	How	
do	we	detect	bias?	After	placing	 the	 issue	within	 the	 framework	of	
missing	data	theory,	I	examine	the	potential	magnitude	of	the	invisi-
ble	fraction	bias	in	resurrection	experiments	and	offer	approaches	to	
	detect	and	account	for	it.

1.2 | Conceptual background

The	 invisible	 fraction	 problem	 is	 a	 missing	 data	 problem	 (Hadfield,	
2008).	When	stored	seeds	fail	to	germinate,	or	dormant	eggs		perish	

in	 the	 sediment	 before	 collection	 (Hairston,	 Van	 Brunt,	 Kearns,	 &	
Engstrom,	1995),	data	on	their	postemergence	phenotype	are	miss-
ing	from	the	analysis.	If	emergence	rate	is	high,	few	data	are	missing	
and	 so	 bias	 in	 estimates	 of	 the	 ancestral	 phenotypic	mean	 is	 likely	
	negligible.	Low	emergence	rates	can	lead	to	strong	bias,	but	not	nec-
essarily.	 It	depends	whether	the	genetic	correlation	between	failure	
and	focal	phenotype	is	strong	or	weak.

In	the	parlance	of	missing	data	theory,	bias	occurs	when	the	pro-
cess	under	study	 in	some	way	depends	on	the	process	generating	
missingness	(Little	&	Rubin,	2002).	In	this	view,	there	are	three	ways	
in	which	data	can	be	missing.	First,	data	can	be	Missing	Completely	
at	Random	(MCAR),	meaning	complete	independence	between	the	
two	processes.	Within	the	context	of	a	resurrection	experiment,	fac-
tors	 causing	 emergence	 failure	 are	 the	 same	 across	 all	 genotypes	
in	 both	 generations	 (Figure	1a)	 and	 unrelated	 to	 postemergence	
phenotype.	Even	 if	emergence	rates	differ	between	ancestors	and	
descendants,	the	evolutionary	shift	in	phenotypic	mean	is	estimated	
without	 bias	 in	 the	MCAR	 case.	 Second,	 data	may	 be	Missing	 at	
Random	 (MAR).	 Here,	 the	 process	 generating	 missingness	 may	
affect	 response	variables,	 but	 in	 the	 context	of	 a	 resurrection	ex-
periment,	 its	 relative	 effect	 does	 not	 vary	 across	 generations.	 As	
indicated	in	Figure	1b,	propagules	that	would	produce	low	ranking	
values	for	the	focal	phenotype	are	less	likely	to	emerge,	but	because	
failure	is	tied	to	rank	within	the	generation,	and	not	rank	across	gen-
erations,	the	estimate	for	evolutionary	shift	 in	phenotypic	mean	is	
unbiased.	This	holds	so	long	as	germination	rates	are	the	same	in	the	
two	generations.	The	missingness	of	data	that	are	MCAR	and	MAR	
can	be	ignored	when	making	inferences	on	the	process	of	 interest	
(Little	&	Rubin,	2002).

F IGURE  1 Contrasting	the	phenotypic	distribution	of	trait	z	in	ancestral	and	descendant	generations	of	a	resurrection	experiment.	Shaded	
portions	of	the	Gaussian	distributions	represent	the	potential	phenotypes	of	individuals	missing	because	of	early	mortality	(the	missing	fraction),	
while	the	unshaded	portions	are	phenotypes	of	individuals	that	survived	to	have	the	trait	measured.	(a)	In	both	generations,	the	factor	causing	
early	mortality	acts	independently	of	the	potential/realized	value	of	z;	data	for	the	dead	individuals	are	missing	at	random.	The	difference	
between	generation	means	is	the	same	as	if	all	had	survived	and	so	is	estimated	without	bias.	(b)	In	both	generations,	the	factor	causing	early	
mortality	declines	with	z,	but	it	does	so	equally	within	each	generation.	The	two	means	are	estimated	with	equal	bias	such	that	the	difference	
between	them	is	estimated	without	bias.	(c)	The	factors	causing	early	mortality	depend	unequally	on	z	between	generations.	The	ancestral	and	
descendant	generation	means	are	estimated	with	unequal	biases,	and	so	the	difference	between	them	will	over/under	estimate	the	expected	
difference	had	all	survived
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Data	Missing	Not	at	Random	(MNAR)	cannot	be	ignored.	Here,	the	
process	generating	missingness	changes	in	intensity	and/or	direction	
with	the	process	under	study	 (Figure	1c).	With	regard	to	a	resurrec-
tion	experiment,	imagine	a	propagule	trait	that	affects	the	chances	of	
emergence	after	decades	of	storage.	If	that	propagule	trait	 is	genet-
ically	 correlated	with	 a	 focal	 trait	 expressed	postemergence,	 ances-
tors	and	descendants	will	appear	to	have	diverged,	even	if	selection	 
imposed	by	global	change—the	process	of	interest—is	zero.

2  | THE POTENTIAL MAGNITUDE OF THE 
MISSING FRACTION BIAS

To	illustrate	the	potential	invisible	fraction	bias,	suppose	the	follow-
ing.	We	are	interested	in	some	focal	trait	z	that	is	expressed	in	mature	
plants.	A	very	large,	random	sample	of	seeds	was	collected	from	a	nat-
ural	population,	dried,	frozen,	and	then	revived	at	a	later	date.	These	
are	grown	side	by	side	with	a	descendent	generation.	All	descendent	
seeds	germinate,	but	fraction	q	of	the	ancestors	fails	to	revive.	Back	
at	the	time	of	collection	(time	0),	the	potential	mean	value	for	focal	
trait	z	within	the	ancestral	sample	was	z̄0,	which	is	the	proper	baseline	
for	testing	evolutionary	change	in	z.	However,	z	is	expressed	at	time	
t,	after	revival	and	emergence,	when	only	1-	q	of	the	ancestral	sample	
remains.	Finally,	assume	that	failure	depends	on	seed	trait	y. To sim-
plify	calculations,	assume	z and y	are	normally	distributed	with	zero	
mean	and	unit	variance.

How	much	will	the	phenotypic	mean	of	the	germinated	ancestors,	
z̄t,	differ	from	z̄0?	Drawing	on	basic	quantitative	genetic	theory	(Lynch	
&	Walsh,	1998),	the	bias	can	be	stated	as	

where Gzy	 is	the	genetic	covariance	between	the	seed	and	focal	
traits,	and	βy	is	the	selection	gradient	acting	on	y	through	storage	sur-
vival.	Absolute	selection	intensity,	|βy|,	will	increase	with	mortality,	q,	
in	some	fashion,	and,	with	it,	the	potential	for	bias.	No	terms	exclu-
sively	for	z	appear	on	the	right-	hand	side	because	the	events	quanti-
fied	by	Equation	1	occur	before	z	is	expressed.	Clearly,	if	Gzy	=	0,	the	
data	missing	 from	the	estimate	of	zt	 are	MCAR,	and	 the	baseline	 is	
unbiased	by	the	storage	process.

Equation	1	can	illustrate	the	relationship	of	bias	to	mortality	rate	
when Gzy	≠	0.	Truncation	selection	 is	the	most	extreme	way	for	q	 to	
relate	to	βy	(Crow	&	Kimura,	1979).	All	seeds	with	trait	values	below	
threshold	y*	fail,	while	those	with	values	above	the	threshold	germi-
nate.	In	this	case,	q	is	the	area	under	the	normal	curve	below	y*. The 
standard	quantitative	 genetic	 formulation	 for	 the	 intensity	 for	 trun-
cation	selection,	when	variance	 is	1.0,	yields	 the	 following	selection	
gradient:	βy = p(y*)/(1–	q),	where	p(y*)	is	the	probability	of	drawing	an	
individual	measuring	below	y*	from	a	normal	distribution.

Figure	2a	shows	that	with	truncation	selection,	zt	can	deviate	dra-
matically	from	z0	when	mortality	is	high	and	the	genetic	covariance	is	
strong.	Under	a	“worst-	case	scenario”	(q = 0.95,	Gxy	=	1),	the	baseline	
to	measure	 evolutionary	 change	 is	 off	 by	 2	SDs.	However,	 the	 bias	
is	very	weak	 (~0.01	SD)	when	mortality	 is	 only	5%	and	 the	 genetic	

correlation	 is	0.25.	At	moderate	mortality	 rates	and	genetic	correla-
tions,	truncation	selection	can	still	distort	the	baseline	by	0.1	to	0.4	
SDs	(Figure	2a),	which	is	sufficient	to	obscure	(or	inflate)	a	biologically	
significant	evolutionary	response.

Calculations	based	on	truncation	selection	set	an	upper	boundary	
on	potential	bias	for	a	given	mortality	rate.	A	weaker	relationship	of	
mortality	to	selection	ameliorates	the	impact	of	a	high	genetic	correla-
tion.	Suppose	the	overall	failure	rate	is	0.5,	but	the	chance	that	a	given	
seed	germinates	is	a	logistic	function	of	trait	y: 

where W	 is	 the	survival	component	of	absolute	 fitness	 through	 the	
storage/revival	 selection	 episode.	 The	 stringency	 parameter	 of	 this	
fitness	 function,	 k,	 determines	 how	 abruptly	 failure	 increases	 with	

(1)z t− z0 = Gzyβy

(2)W =
1

1 + eky

F IGURE  2 Bias	in	the	estimated	ancestral	mean	phenotype	
increases	with	the	germination	failure	(mortality)	rate	and	with	the	
stringency	of	selection	on	seed	traits	affecting	germination	failure.	
(a)	Under	truncation	selection	(k	=	∞),	bias	increases	strongly	with	
germination	failure	rate	when	the	seed	trait	y	is	perfectly	genetically	
correlated	with	the	adult	trait	z	(Gzy

 =	1.0),	but	bias	is	negligible	when	
the	correlation	is	weak.	(b)	At	a	given	germination	failure	rate,	bias	
can	be	strong	when	the	failure	is	overwhelmingly	determined	by	
trait	y	(k = 100),	but	the	strength	of	the	relationship	depends	on	Gzy. 
If	additional	factors	unrelated	to	y	are	the	overwhelming	cause	of	
mortality	(k	<<	1.0),	bias	is	weak	even	if	Gzy	is	large
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y.	Figure	1S	shows	that	at	k = 10,	selection	is	approximately	truncat-
ing;	nearly,	all	 seeds	with	y	values	below	the	mean	fail,	while	 those	
above	succeed.	When	k = 0.1,	the	chance	of	failure	still	increases	with	
y,	 but	most	 failures	 are	 independent	 of	 seed	 trait	 y.	 In	 both	 cases,	
q = 0.5,	but	the	selection	gradient	on	y	falls	from	~0.80	when	k = 10,	
to	~0.05	when	k = 0.1.	Thus,	seed	mortality	by	itself	is	a	poor	predic-
tor	of	bias.	Holding	q	at	0.5,	Figure	2b	shows	that	a	weak	slope	to	the	
fitness	function	(low	k)	generates	low	bias,	even	under	strong	genetic	
correlations.

To	repeat,	if	seed	germination	failure	is	very	low,	bias	will	be	triv-
ial.	But	the	bias	under	high	failure	rates	can	be	either	trivial	or	cata-
strophic,	depending	on	how	strongly	mortality	genetically	correlates	
with	 the	 focal	 trait.	One	cannot	determine	 the	strength	of	 this	 cor-
relation	from	an	unstructured	sample	of	propagules.	However,	 if	ge-
nealogical	 relationships	within	 the	 ancestral	 sample	 are	 known,	 the	
potential	 postemergence	 phenotype	 of	 a	 failed	 propagule	 can	 be	
inferred	 from	 phenotypes	 of	 its	 surviving	 relatives	 (Hadfield,	 2008;	
Steinsland,	Larsen,	Roulin,	&	Jensen,	2014).	The	next	section	shows	
how	relatedness	among	individuals	can	be	used	to	detect	and	account	
for	an	invisible	fraction	problem.

3  | DETECTING AND ACCOUNTING FOR 
THE INVISIBLE FRACTION

An	invisible	fraction	bias	can	be	detected	when	data	on	juvenile	sur-
vival	 and	 later-	life	 phenotypes	 are	 collected	 for	 distinct	 genotypic	
classes.	 Mojica	 and	 Kelly	 (2010)	 presented	 a	 salient	 example	 in	 a	 
3-	year	field	experiment	on	the	wildflower	Mimulus guttatus. Previous 
studies	had	consistently	 shown	 that	plants	with	wider	corollas	pro-
duced	more	seed,	signifying	upward	selection	on	flower	size.	Because	
these	studies	examined	only	mature	plants	from	wild	populations,	no	
information	could	be	 retrieved	on	 the	 relationship	of	 flower	size	 to	
juvenile	 survival—the	plants	 that	died	young	were	missing	 from	the	
sample	used	to	estimate	selection	intensity.	Mojica	and	Kelly’s	study	
used	 plants	 from	 an	 artificial	 selection	 experiment:	 seedlings	 from	
large-	selected,	small-	selected,	and	control	lines	for	corolla	width	were	

planted	 into	 the	 field.	 Considering	 only	 the	 plants	 that	 survived	 to	
adulthood,	the	line	selected	for	 larger	flowers	had	a	twofold	advan-
tage	 in	 seed	production	over	 the	 small-	flowered	 line—a	 result	 con-
cordant	 with	 previous	 studies.	 However,	 not	 all	 plants	 survived	 to	
flowering.	Juvenile	mortality	for	the	large-	flowered	line	was	10	times	
greater	 than	 for	 the	 small.	 Clearly,	 the	mean	 flower	 size	 among	 all	
survivors	was	smaller	than	 it	would	have	been	 if	all	plants	from	the	
large-	flowered	line	had	survived	to	maturity.	Even	though	flower	sizes	
for	the	dead	plants	were	missing,	the	resulting	bias	could	be	detected	
because	each	deceased	plant	could	be	assigned	to	either	the	large-		or	
small-	flowered	 line.	Phrased	differently,	 the	potential	 phenotype	of	
the	missing	individuals	could	be	inferred	from	the	phenotypes	of	their	
surviving	relatives	(Figure	3).

Returning	to	the	hypothetical	situation	from	the	previous	section,	
quantitative	genetic	methods	can	detect	genetic	correlations	between	
seed	traits	affecting	storage	mortality	and	a	later-	expressed	plant	trait	
z.	Although	the	seed	traits	are	unknown	and	hence	unmeasured,	they	
can	be	correlated	with	the	survival	fitness	component,	W,	which	can	
be	known	for	each	seed	in	a	properly	designed	experiment.	If	z	is	ge-
netically	correlated	to	hypothetical	y,	and	y	 is	correlated	to	W,	 then	
there	will	 be	 a	 genetic	 correlation	 between	 z and W.	 Figure	4	 illus-
trates	a	situation	in	which	families	with	low	values	of	z	have	low	stor-
age	survivorship,	while	high	z	families	have	high.	The	inference	from	
the	genealogical	relationships	among	plants	is	that	alleles	increasing	z 
also	increase	traits	promoting	seed	survival.

To	illustrate	the	relationship	of	bias	in	zt	to	GW,z,	I	ran	simulations	
incorporating	the	same	family	structure	as	the	Project	Baseline	col-
lections.	This	 genetic	 correlation	was	 approximated	 from	 the	 cor-
relation	of	the	family	means	for	z and W.	R	code	for	the	simulation	is	
found	in	the	Data	S1.	Figure	4	shows	the	mean	bias	for	simulations	
of	a	resurrected	baseline	generation	comprised	of	200	half-	sib	fam-
ilies	with	20	sibs	per	 family,	where	the	population	mean	mortality	
was q = 0.5.	One	hundred	simulations	were	run	for	each	of	the	k/Gzy 
combinations	 illustrated	 in	Figure	2b.	The	simulation	shows	that	a	
moderate	to	strong	genetic	correlation	between	W and z clearly in-
dicates	a	biased	estimate	of	zt	.	When	GW,z <	0.2,	the	bias	tends	to	be	
0.1 SD	or	less.	I	emphasize,	however,	that	while	GW,z	can	be	used	to	

F IGURE  3 When	seed	trait	y,	which	
causes	mortality,	is	strongly	correlated	
with	adult	trait	z,	families	with	high	
values	of	z	will	also	have	survival	rates.	
(a)	The	distribution	of	potential	z	values	
for	all	siblings,	missing	(shaded	bars)	and	
measured	(open	bars;	see	Figure	1).	(b)	The	
correlation	between	the	family	means	for	z 
and	the	proportion	of	siblings	surviving	to	
express	z
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flag	a	serious	invisible	fraction	problem,	it	does	not	by	itself	correct	
the	bias.

Recently,	 Steinsland	 et	al.	 (2014)	 offered	 an	 approach	 to	 deal	
with	 the	 missing	 fraction	 problem	 that	 uses	 a	 shared	 parameter	
model	 (SPM;	 Vonesh,	 Greene,	 &	 Schluchter,	 2006),	 implemented	
in	 a	Bayesian	 framework.	These	models	 assume	 a	 conditional	 inde-
pendence	between	the	data	model	and	a	model	for	the	missingness	
process.	Steinsland	et	al.	 (2014)	should	be	consulted	 for	details,	but	
a	brief	description	follows.	Consider	vector	z,	which	contains	the	nor-
mally	distributed	potential	phenotypes,	z,	of	all	N	individuals	sampled	
from	 a	 population,	 both	 ancestors	 and	 descendant	 (plus	 hybrids,	 if	
	included).	Also	consider	vector	w,	which	is	the	survivorship	status	of	
all	individuals	at	the	time	that	z	is	expressed	(all	elements	of	w are 0 or 
1).	Their	joint	probability	density	is	

where	the	vector	d	contains	parameters	for	the	differences	across	gen-
erations,	m	the	parameters	for	the	survival	process,	and	a	the	breeding	
values	for	z.	Thus,	the	combined	model	includes	a	conditional	model	
for	the	data,	p(z|a,	d),	generated	from	the	animal	model	of	quantitative	
genetics	(Lynch	&	Walsh	1998;	Wilson	et	al.,	2010),	and	a	conditional	

model	 for	missingness,	p(w|a,	m).	 This	model	 structure	 implies	 that	
the	association	between	the	trait	of	interest	and	the	failure	to	revive	
is	induced	by	additive	genetic	effects	(Steinsland	et	al.,	2014).	An	ad-
ditional	parameter	 is	estimated	by	this	procedure	that	describes	the	
association	between	the	two	conditional	models;	if	the	association	is	
0,	the	two	models	are	unrelated	and	the	invisible	fraction	ignorable.	
Using	this	approach,	Steinsland	et	al.	(2014)	showed	that	selection	on	
the	breeding	value	for	spot	size	in	female	barn	owls	(Tyto alba)	occurs	
during	the	early	nesting	stage,	even	before	the	spots	are	fully	formed.

This	sort	of	analysis	can	be	applied	to	a	resurrection	experiment	
if	the	relatedness	among	the	stored	propagules	is	known.	This	condi-
tion	is	met	in	the	Project	Baseline	collection	because	the	stored	seeds	
are	packaged	by	maternal	sibships	(although	paternity	is	not	known).	
Germination	failure	during	the	refresher	generation	can	be	recorded,	
and	 information	 on	 all	 subsequently	 expressed	 traits	 for	 the	 failed	
seeds	entered	as	missing	values	in	the	data	set.	An	SPM	model	may	
then	be	used	 to	estimate	 the	 level	of	divergence	between	ancestor	
and	 descendant	 samples	 (and	 their	 hybrids)	 due	 to	 additive	 genetic	
variance,	 which	 quantifies	 the	 evolutionary	 response	 to	 selection	 
exerted	by	global	change.

4  | DISCUSSION

A	 crucial	 assumption	 in	 resurrection	 experiments	 is	 that	 the	 resur-
rected	individuals	are	a	random	sample	of	genotypes	from	the	ances-
tral	generation	(Bennington	&	McGraw,	1995).	If	genotype	influences	
survival	through	the	storage	and	revival	process,	the	phenotypic	mean	
estimated	among	the	survivors	can	deviate	from	the	mean	expected	
for	the	ancestral	generation	as	a	whole.	If	so,	the	baseline	for	estimat-
ing	evolutionary	response	will	be	biased,	potentially	leading	to	a	false	
inference.	When	selection	exerted	during	storage	goes	in	the	opposite	
direction	as	selection	in	the	wild,	a	true	evolutionary	response	could	
go	undetected—a	false	negative.	False	positives	arise	 if	no	selection	
occurs	 in	 the	wild,	 but	 selection	 during	 storage	 shifts	 the	 baseline.	
Minor	 biases	may	 not	 affect	 qualitative	 inferences,	 but	will	 lead	 to	
over/under	estimates	of	evolutionary	rate.

The	calculations	presented	above	indicate	that	under	a	worst-	case	
scenario,	 the	 estimated	phenotypic	mean	 for	 a	 late-	life	 trait	 can	be	
highly	biased	by	a	strong	genetic	correlation	to	seed	storage	tolerance.	
However,	when	 seed	mortality	 is	 related	 to	additional,	 uncorrelated	
factors,	 and/or	when	 the	genetic	 correlation	 to	 storage	 tolerance	 is	
weak,	 the	 bias	 is	 weak.	 Under	 some	 reasonable	 assumptions,	 esti-
mates	of	the	baseline	mean	will	be	off	by	less	than	0.1	SD,	even	when	
seed	mortality	is	high.	A	genetic	correlation	between	storage	survival	
and	the	trait	mean	signals	that	the	invisible	fraction	of	the	sample	can-
not	be	ignored	when	estimating	the	ancestral	phenotypic	mean.

Methods	to	identify	and	potentially	correct	an	invisible	fraction	
bias	 depend	 upon	 genealogical	 information.	 Resurrection	 experi-
ments	have	addressed	evolutionary	change	 in	a	variety	of	ecolog-
ically	 important	 traits	 (see	Franks	 et	al.,	 2017),	 but	 in	most	 cases,	
the	 genealogical	 structure	 of	 the	 samples	was	 unknown	 and	 per-
haps	 was	 unknowable.	 However,	 it	 would	 be	 wrong,	 for	 several	

(3)p(z,w|d,m) = p(z|a,d)p(w|a,m)

F IGURE  4 Bias	in	estimates	of	the	phenotypic	mean	for	z	
increases	with	the	genetic	correlation	between	z	and	probability	
of	survival,	W.	Each	series	in	the	graph	represents	a	different	level	
of	stringency	in	the	relation	of	seed	trait	y	to	survival,	with	k = 100 
indicating	that	y	has	overwhelming	influence	on	W,	whereas	k = 0.1 
indicates	that	other	factors	overwhelmingly	influence	survival.	
Symbols	for	the	series	are	varied	in	shading	to	increase	clarity.	The	
points	in	each	series,	from	left	to	right,	indicate	increasing	levels	of	
genetic	correlation	between	y and z	(circles,	Gzy =	0.125;	triangles,	
Gzy	=	0.25;	squares,	Gzy	=	0.50;	diamonds,	Gzy	=	1.0).	If	y	determines	
survival,	W,	and	if	y	is	strongly	correlated	to	z,	then	the	correlation	
between	W and z	will	likewise	be	strong.	When	y	has	scant	influence	
on W,	the	genetic	correlation	between	W and z	will	be	weak,	no	
matter	what	the	genetic	correlation	between	y and z.	Overall,	a	
strong	genetic	correlation	of	W	to	z	indicates	that	the	missing	
fraction	problem	is	causing	a	strong	bias	in	the	estimate	of	the	
phenotypic	mean	of	z
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reasons,	to	conclude	that	such	experiments	are	necessarily	invalid.	
First,	if	revival	rate	of	dormant	propagules	is	high,	bias	will	be	trivial.	
Second,	if	the	performance	of	ancestral	and	descendant	generations	
is	tested	both	in	ancestral-	like	and	in	descendant-	like	environments,	
and	if	each	does	better	in	its	own	environment,	adaptive	phenotypic	
evolution	 over	 time	 is	 the	 parsimonious	 explanation	 (see	 Franks	
et	al.,	2017).

It	 is	 also	 parsimonious	 to	 conclude	 adaptation	when	 focal	 traits	
simply	have	no	functional	relationship	to	processes	that	would	influ-
ence	 propagule	 survival	 and	 emergence.	 Resistance	 to	 cyanobacte-
ria	 toxins	 in	Daphnia	 (Hairston	et	al.,	1999)	and	herbicide	 resistance	
in	morning	glories	 (Kuester,	Wilson,	Chang,	&	Baucom,	2016)	 seem	
	unlikely	 to	 have	mechanisms	 in	 common	with	 prolonged	 propagule	
survival.	 Comparative	 studies	 of	 contemporary	 populations	 can	 be	
used	to	detect	genetically	mediated	functional	relationships,	although	
care	must	be	 taken	 to	distinguish	 genetic	 correlation	due	 to	pleiot-
ropy	 from	 that	 due	 to	 population	 structure	 (linkage	 disequilibrium).	
But,	genes	governing	basic	metabolism	are	likely	to	be	expressed	both	
during	 revival	 and	 subsequent	growth.	Alleles	at	metabolic	 loci	 that	
are	mildly	deleterious	under	typical	conditions	could	be	lethal	for	em-
bryos	under	the	stress	of	prolonged	storage	and	revival.

Pleiotropic	 effects	 of	 loci	 expressed	 during	 both	 early	 and	 late	
stages	 are	 one	 source	 of	 an	 invisible	 fraction	 problem,	 but	 stud-
ies	 on	 germination	 rates	 in	 crop	 cultivars	 suggest	 a	 second	 path— 
genetically	mediated	maternal	effects.	Crop	varieties	with	larger	seeds	
commonly	 have	 higher	 germination	 rates,	 especially	 under	 stressful	
conditions	 such	 as	 high	 temperature	 or	 saline	 soils	 (Krishnasamy	&	
Seshu,1989;	 Almodares,	 Hadi,	 &	 Dosti,	 2007;	 Moud	 &	Maghsoudi,	
2008).	These	varieties	 also	 have	 faster	 growing	 seedlings.	Although	
varietal	differences	 in	survival	and	subsequent	growth	could	be	due	
to	with-	individual	pleiotropy,	they	also	could	reflect	transgenerational	
pleiotropy	caused	by	loci	that	govern	both	growth	and	maternal	pro-
visioning.	An	allele	that	 increases	the	pool	of	maternal	resources	for	
seed	production,	or	one	that	influences	the	number	of	seeds	drawing	
upon	 that	pool,	would	also	 influence	offspring	 size	and,	hence,	 sur-
vival.	As	that	offspring	germinates	and	develops,	it	will	express	the	al-
leles	inherited	from	the	mother.	Offspring	produced	by	other	mothers,	
with	weaker	alleles,	do	not	survive	to	express	the	focal	trait.	In	such	a	
case,	supporting	studies	on	the	covariance	between	seed	size	and	the	
focal	trait	could	be	useful	in	correcting	for	an	invisible	fraction	bias.

Fruiting	phenology	in	plants	presents	another	example	of	a	geneti-
cally	mediated	maternal	effect	that	could	produce	an	invisible	fraction	
problem.	If	seeds	are	collected	too	early	in	the	season,	those	from	late-	
fruiting	plants	will	not	have	accumulated	their	full	complement	of	cryo-
protectants	(Walters,	2015).	When	stored	under	the	conditions	used	for	
the	Project	Baseline	collection,	seeds	carrying	genes	for	late-	flowering	
could	 have	 lower	 storage	 survival.	 Fortunately,	 the	 Project	 Baseline	
sampling	protocol	was	designed	to	alleviate	this	and	related	problems	
by	making	repeated	collections	encompassing	the	phenological	varia-
tion	in	target	populations	(Etterson	et	al.,	2016;	Franks	et	al.,	2017).

Although	 low	 germination	 does	 not	 lead	 inevitably	 to	 a	 strong	
bias,	high	germination	precludes	it.	Some	studies	using	the	resurrec-
tion	approach	have	reported	similar	germination	rates	in	the	ancestral	

and	 descendant	 generations	 (Franks	 et	al.,	 2007;	Kuester,	 Chang,	&	
Baucom,	2015;	Thomann	et	al.,	2015).	Based	on	this	similarity,	inves-
tigators	(including	myself)	have	made	the	tacit	assumption	that	germi-
nation	failures	have	generated	data	that	are	MCAR	or	MAR.	However,	
data	can	be	MNAR	even	with	equal	germination	rates	in	the	ancestral	
and	descendant	samples	(Figure	1c).	To	make	the	most	of	resurrection	
experiments,	both	samples	must	have	known	genealogical	structure.	
No	doubt,	advances	in	statistical	methodology	will	continue	to	refine	
ways	 to	 use	 information	 on	 relatedness	 to	 account	 for	 bias	 in	 esti-
mates	of	evolutionary	response	in	natural	populations.	When	the	final	
release	of	Project	Baseline	seed	becomes	available,	ca.	year	2065,	fu-
ture	investigators	will	be	able	to	use	family	structure	to	estimate	the	
range	of	potential	bias.
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