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Abstract Selection gradient analysis examines the strength and direction of phenotypic

selection as well as the curvature of fitness functions, allowing predictions on and insights

into the process of evolution in natural populations. However, traditional linear and qua-

dratic selection analyses are not capable of detecting other features of fitness functions,

such as asymmetry or thresholds, which may be relevant for understanding key aspects of

selection on many traits. In these cases, additional analyses are needed to test specific

hypotheses about fitness functions. In this study we used several approaches to analyze

selection on a major life-history trait—flowering time—in the annual plant Brassica rapa

subjected to experimentally abbreviated and lengthened growing seasons. We used a model

that incorporated a tradeoff between the time allocated to growth versus the time allocated

to reproduction in order to predict fitness function shape. The model predicted that optimal

flowering time shifts to earlier and later dates as the growing season contracts and expands.

It also showed the flowering time fitness function to be asymmetrical: reproductive output

increases modestly between the earliest and the optimal flowering date, but then falls

sharply with later dates, truncating in a ‘tail of zeros’. Our experimental results strongly

supported selection for early flowering in short season and selection for late flowering in

long season conditions. We also found support for the predicted asymmetry of the flow-

ering time fitness function, including a ‘tail of zeros’ at later flowering dates. The form of

the fitness function revealed here has implications for interpreting estimates of selection on

flowering time in natural populations and for refining predictions on evolutionary response

Electronic supplementary material The online version of this article (doi:10.1007/s10682-014-9719-6)
contains supplementary material, which is available to authorized users.

A. E. Weis (&)
Koffler Scientific Reserve at Jokers Hill, University of Toronto, Ontario L7B IK5, Canada
e-mail: arthur.weis@utoronto.ca

A. E. Weis � S. M. Wadgymar
Department of Ecology and Evolutionary Biology, University of Toronto, Ontario L7B IK5, Canada

M. Sekor � S. J. Franks
Department of Biology, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA

123

Evol Ecol (2014) 28:885–904
DOI 10.1007/s10682-014-9719-6

http://dx.doi.org/10.1007/s10682-014-9719-6


to climate change. More generally, this study illustrates the value of diverse statistical

approaches to understanding mechanisms of natural selection.

Keywords Directional selection � Stabilizing selection � Non-linear selection � Fitness

function � Fitness surface � Flowering time � Brassica rapa

Introduction

Natural selection occurs through a covariance between phenotype and fitness (Price 1970).

Taking Price’s insight a step further, Lande and Arnold integrated the fitness-phenotype

covariance into a quantitative genetic framework through the development of selection

gradient analysis, which links selection to evolutionary response through the breeder’s

equation (Lande 1979; Lande and Arnold 1983). This revolutionized the study of natural

selection and launched thousands of studies on the intensity and direction of selection in

natural populations (Kingsolver and Pfennig 2007). Discovering the causes of natural

selection, however, requires additional tools (Mitchell-Olds and Shaw 1987; Wade and

Kalisz 1990). Experimental manipulation of the environment and/or the phenotypic dis-

tribution can test hypotheses on selective agents, although manipulations are not often

feasible.

In some cases selective mechanisms can be evaluated in further detail by a close

examination of the fitness function (single trait) or fitness surface (multiple traits) shape.

Some agents of selection shape fitness functions in predictable ways. Examples include

sigmoid relationships between size and attack survival for seeds within fruits (Toju and

Sota 2006) and gallmakers in their galls (Weis et al. 1985), as predicted from enemy/victim

size ratios (see also Janzen and Stern 1998). In the case of plant defense against herbivores,

optimality theory predicts an asymmetrical convex relationship between allocation to

resistance and fitness, i.e., under-investing in defense by a certain amount has a more

negative fitness effect than over-investing by the same amount (Simms and Rausher 1987;

Mauricio and Rausher 1997; Franks et al. 2008). Mountford (1968) noted that with regard

to increased litter size in mammals ‘‘the extra number at parturition is more than offset by

the higher mortality between birth and weaning’’. With sibling competition for parental

resources, the predicted fitness function for litter size rises slowly between the smallest and

the optimal sizes, falls sharply with larger sizes, and truncates in a ‘tail of zeros’, i.e., litters

so large that no offspring survives competition. The strength of selection on traits like these

can be quantified through linear and quadratic selection gradients. However, when the

predicted fitness function in neither a straight line nor a parabola, more comprehensive

tests on selection mechanisms are achievable though alternative statistical models. As a

case in point, we present an experimental study of selection on flowering time in an annual

plant.

The scheduling of reproduction is among the most important life history traits (Stearns

and Koella 1986; Kozlowski and Wiegert 1987). For plants, the timing for the seasonal

transition from vegetative growth to flowering has a multitude of impacts on fitness,

mediated through many agents, biotic and abiotic (Elzinga et al. 2007; Munguı́a-Rosas

et al. 2011). The key determinant of selection considered by life history theory is the trade-

off between the interval of time allocated to vegetative growth versus time allocated to

mating and maturing seed (Cohen 1976; King and Roughgarden 1983; Ejsmond et al.

2010; Johansson et al. 2013). In annuals, the total time available is determined by the

length of the growing season, which inevitably ends with death. Theory predicts that the

longer a plant delays flowering, the longer it can grow at near-exponential rates, thereby
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gaining an accelerating capacity to secure resources for reproduction. Too long a delay,

however, limits the time it can use this capacity; a plant that first blooms the day before a

killing frost may produce many flowers but will leave no viable offspring. If the season

contracts or expands, the optimal flowering time advances or recedes.

Under the ‘‘time to grow-time to reproduce’’ trade-off, the flowering time fitness

function should peak at later dates in long-season environments than in short ones

(Fig. 1a), absent severe weather fluctuations across the season. In addition, the function is

asymmetrical: the adverse consequences for starting ‘‘too late’’ will be stronger than for

starting ‘‘too early.’’ There will also be a truncation date separating earlier-flowering plants

with some reproductive success from very late plants with zero success. These elements of

fitness function shape cannot be detected through selection gradients.

This paper presents a model to generate predictions on the shape of a flowering time

fitness function when it is estimated from a sample of plants drawn from a natural pop-

ulation. We then test these predictions through an experiment that varied the length of the

growing season for California populations of Brassica rapa. These experiments are critical

for testing the predictions for two reasons. First, they directly test the hypothesis that

changing the growing season length causes a change in selection. Second, they extend our

ability to examine the fitness function beyond the limits imposed by natural populations/

environments. For example, if flowering ‘‘too late’’ were extremely costly, we would

expect selection to have already removed late-flowering genotypes from a natural popu-

lation, which then eliminates our ability to detect this cost. This cost can be revealed,

however, by shortening the growing season: plants flowering at the optimal time for long

season conditions may flower ‘‘too late’’ under early season conditions. We used selection

gradient analysis to estimate the intensity and direction of selection in these experiments.

To explore specific, model-based predictions on fitness function shape, we used three

mutually reinforcing regression approaches, explained below.

Theoretical background

Theoretical treatments indicate that in seasonal environments, optimal flowering time

covaries with the length of the growing season (e.g., Cohen 1976; King and Roughgarden

1983; Kozlowski 1992; Fox 1992; Ejsmond et al. 2010; Johansson et al. 2013). These

models have aimed to find the optimal allocation of energy between the growth of vege-

tative (resource acquiring) structures and the development of reproductive structures. They

predict that as the end of the growing season approaches, reproductive allocation should

switch from zero to 100 % of daily photosynthetic assimilation. The longer the growing

season, the later the allocation switch. A closer look at these models reveals an additional

prediction: the flowering time fitness function is asymmetrical (Fig. 1), and plants that

begin flowering past some late date are doomed to reproductive failure (Cohen 1976; King

and Roughgarden 1983; Kozlowski 1992).

Regression is the obvious approach for comparing these predictions to real data. The

challenge is to identify appropriate functional forms for regression. But before choosing

regression functions, it is prudent to ask if the shape predicted from optimality models will

be detectable in a fitness function estimated from a random sample of plants drawn from a

heterogeneous population. Published plots showing the asymmetric relationship (e.g., King

and Roughgarden 1983), depict numerical examples that vary flowering time while holding

all other factors equal—factors such as growth rate and exact season length. But details of

function shape can change with growth parameters, and a fitness function estimated from a
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variable population may or may not have the same features predicted from the ‘all else

equal’ model. To sharpen our predictions we developed a model based on life-history

theory, and then used it to see how fitness function shape may be manifest in a hetero-

geneous sample of plants.

Fitness function sensitivity to season length, and to growth and developmental rates

We modified a discrete-time model for plant vegetative growth (Weis and Hochberg 2000;

Weis et al. 2000) that is based on the following logistic recursion equation:

Fig. 1 Fitness functions for flowering time predicted by the modified logistic plant growth model. a Lines
depict expected reproductive output for three different growing season lengths, T. The histogram represents
a hypothetical phenotypic distribution of flowering times. The values of the univariate linear selection
gradient, b, represent the intensity and direction of natural selection on flowering time in each of the
growing season environments. Model parameter values: g = 0.30, d = 0.002. b Line depicts the fitness
function in a single environment, while the three histograms represent three phenotypically distinct
populations grown in that environment. The values of the univariate linear selection gradient, b, represent
the intensity and direction of natural selection on flowering time for each population in this environment.
Model parameter values: g = 0.30, d = 0.002, T = 28
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Vtþ1 ¼ Vt þ
gVt

1þ dVt

� atVt:

Here, Vt is the mass of vegetative tissues at time t, and g is the fundamental growth rate of

the vegetative part. The d parameter determines the decline in realized growth rate as size

increases, as would occur with self-shading and increased allocation to structural support.

Thus the middle term on the right-hand side is the mass of assimilated resources that are

then converted to new tissue during time interval t. The last term on the right-hand side is

allocation to reproductive structures: during each time step, fraction at is invested in

reproductive tissue. Reproductive output at time t is thus Rt = at Vt. Optimality models

predict that over broad conditions, fitness is maximized when reproductive allocation is

zero before flowering (i.e., when t \ f). Once flowering starts (t C f), all current production

is allocated to reproductive structures until the end of the season (t = T) (King and

Roughgarden 1983; Kozlowski 1992). In our model this allocation pattern was achieved by

making at = g/(1 ? dVt) after flowering starts, but zero before. Lifetime reproductive

output is

W ¼
XT

t¼f

Rt:

For simplicity we assume no herbivory or plant mortality before the end of the season,

equal survivorship of seeds regardless of the date they are produced (see Ejsmond et al.

2010) and strong correlation between female and male fitness components.

To begin this exploration, we examine the relationship of f—time of first flowering—to

reproductive output, W, in environments that differ in the length of the growing season, T.

Figure 1a shows three realizations of the model with fixed values of g and d. These fitness

functions exhibit the asymmetry of the optimality models, as well as the abrupt transition

from non-zero to zero fitness beyond the critical date, T.

To see the implications of this fitness function shape, consider the direction and

intensity of selection on a hypothetical population with a normal distribution of flowering

times, but uniform in all other respects (Fig. 1a, histogram on x-axis). In this example the

mean flowering time is at interval 23 (s.d. = 1.41). If exposed to an environment with a

growing season of 28 intervals, the mean coincides with the optimal flowering time. Were

the fitness function to be symmetrical, there would be no directional selection on flowering

time. Instead, the asymmetry imposes weak, but non-zero directional selection for earlier

flowering (univariate selection gradient, b = -0.03). If the growing season contracts by

two intervals, selection for earlier flowering intensifies, but if it expands by two intervals,

selection reverses direction. Note that in this example, the season contracts and expands by

the same amount, but selection in the short season environment is almost 3 times stronger

than in the late (b = 0.30 vs. 0.11, respectively). This difference in selection intensity can

be attributed in part to the greater breadth of the fitness function with longer growing

seasons, but the asymmetry of the function amplifies this effect.

The impact of asymmetry is more apparent in the example presented in Fig. 1b. Here

we calculate the univariate selection gradient for three hypothetical plant populations,

depicted as histograms upon the x-axis, for the T = 28 fitness function. The mean for the

earliest-flowering population lies 4 intervals earlier than the optimal flowering time. It

experiences moderate directional selection for later flowering times (b = 0.18). For the

population flowering four intervals after the optimum, selection is in the opposite direction

(for earlier flowering) and nearly five times stronger (b = 0.88).
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Variations in g (fundamental growth rate), d (size-dependent decline in realized growth

rate) and T (growing season length) effect the shape of the flowering time fitness function

(Fig. 2a–c). Variation in growth rate causes divergence of the fitness functions at early

flowering times, and weakly shifts the optima to later dates with lower growth rates

(Fig. 2a). The functions converge on zero at the critical date, T. Change in the size-

dependent growth rate parameter, d, has its strongest effect toward middle flowering times,

and shifts the optimum to later times as it decreases (Fig. 2b). Low values of d may make

the fitness function more leptokurtic. Individuals may also experience different growing

season lengths: this can be due to micro-environment or variation in the time lag between

flower production and seed maturation (see Cohen 1976; Kozlowski 1992). Variation in

T strongly affects the optimum, causing fitness functions to diverge at later flowering dates

(Fig. 2c). Despite differences in detail, the fitness functions retain the characteristic

shape—asymmetry and truncation—as g, d and T are varied.

Making and testing predictions for heterogeneous populations

Our environmental manipulation experiment with B. rapa tested predictions on the shape of

the flowering time fitness function. However, two more issues must be considered before

testing empirically estimated functions against hypothesized shapes. First, natural popula-

tions are collections of individuals differing in growth and development rates. The fitness

function shape predicted under the ‘all else is equal’ condition may be modified or lost in the

noise of individual variation. Second, the range of flowering times in natural populations

may be too narrow to reveal all of the potential features of fitness function shape (see Fig. 1).

Can we expect the flowering time fitness function to retain asymmetry and truncation

when estimated from a heterogeneous population? Figure 3 illustrates a hypothetical

mixed population, with the points taken from Fig. 2a–c. A locally weighted polynomial

regression (see below) through the mean fitness for each flowering date (Fig. 3, solid

curve) clearly shows the predicted asymmetry is evident in this heterogeneous population.

The transition from non-zero to zero fitness at late flowering times is less abrupt, and

resembles an asymptotic decline to zero, although zero is in fact achieved within the

flowering time range. Neither of these two features is detectable from the quadratic

regression fit to these data (Fig. 3, dashed curve).

The second issue arises because the shape of a function estimated over the narrow phe-

notypic range of a particular population may not show all of the features hypothesized for the

broader range of potential flowering times (see Fig. 1b). The B. rapa populations used in this

experiment differ in their mean and range of flowering times. Given model predictions and the

limited range in observed flowering times, we expected three potential scenarios: (1) an

asymmetrical, convex curve will best fit the relationship between flowering time and fitness

when the fitness mode lies toward the center of the range: (2) if the fitness mode is later than

the flowering time range, a decelerating upward trend is expected; and (3) if the fitness mode

is earlier than the range, a downward, concave shape is expected, ending in a ‘tail of zeros.’

Given these expectations, the overall fitness function shape can be pieced together from

fitness functions estimated for particular populations in particular seasonal environments.

Methods

We examined the relationship between flowering time and seed production for two B. rapa

populations under long and short season treatments in the greenhouse. The data were
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collected during an experiment previously described by Franks et al. (2007) and Franks and

Weis (2008), which can be consulted for further detail. One population (Back Bay)

occupies a sandy bluff; its well-drained soil dries quickly, leading to an early summer

drought in most years. The other population (Arboretum) grows on a low berm through a

freshwater marsh; richer soil and a higher water table prolong its growing season by

Fig. 2 Sensitivity of predicted fitness functions to variation in the growth model parameters. a Increasing
basic growth rate, g, shifts function mode to earlier dates and causes functions to diverge over earlier
flowering times. b Reducing the size-dependent deceleration in growth, d, shifts the function mode to later
dates and causes functions to diverge over the mid-range of flowering times. c Extending the critical date for
floral success, T, shifts the function mode to later dates and causes functions to diverge at later flowering
times
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several weeks. Accordingly, mean flowering time for Back Bay is 10–12 days earlier than

Arboretum (Fig. S1; see also Franke et al. 2006). Using a resurrection experiment, Franks

et al. (2007) found that these B. rapa populations evolved a 2–8 day acceleration in

flowering time over the course of a 5-year drought.

Experimental conditions

Plants were grown from seed derived from collections made in 1997 (ancestors) and 2004

(descendants). The field-collected seeds were used to grow a refresher generation that

produced a crop of seeds maturing under uniform conditions, thus ameliorating maternal

effects. F1 hybrids between the ancestors and descendents were also produced during the

refresher generation. We pooled the data for the three generations (1997, 2004 and hybrids)

to expand the range in flowering time and thereby improve our ability to discern fitness

function shape.

Growing season was manipulated through the watering regime. In the short season

treatment, plants were watered at least once daily to saturation until day 51 after sowing.

Pots were then allowed to dry gradually. The long season treatment was identical, except

that watering continued until day 88. Watering treatment had a minor effect on flowering

time (Table S1, Fig. S1). About 75 % of the plants had flowered at 51 days whereas all

plants had flowered well before day 88. At senescence, we harvested and weighed all seeds

in aggregate for every plant. Seed count per individual was estimated by regression. Seeds

were counted for 20 plants in each population; more that 92 % of the variance in count was

explained by weight.

Estimating selection gradients and fitting fitness functions

Linear and non-linear selection on flowering time was evaluated by selection gradient

analysis (Lande and Arnold 1983; Stinchcombe et al. 2008). Seed count was relativized

Fig. 3 The expected shape of the flowering time fitness function when estimated from a heterogeneous
population. The points were taken form the model runs illustrated in Fig. 2. The black curve is the spline
through the mean points at each flowering time, while the dashed line is the quadratic regression through all
of the points
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(proportionate to the mean) and flowering time standardized to a zero mean and unit

variance for each population-treatment separately. Many plants in the short season treat-

ment produced zero seed, and so we used the aster package of R (Geyer et al. 2007; Shaw

and Geyer 2010; R Development Core Team 2008) to estimate selection gradients,

assuming a zero-inflated Poisson error distribution.

We assessed the shape of the fitness function though three alternative analyses: locally

weighted polynomial regression, parametric non-linear regression, and piecewise

regression.

Similar to the cubic spline (Schluter and Nychka 1994), the locally weighted polyno-

mial regression produces a trend line by piecing together regression functions estimated for

short, contiguous bands of the independent variable. Our analysis used a first order

polynomial. Weights were assigned to observations within each band based on a Gaussian

function of distance from the band mid-point. The shapes of the trend lines from such

analyses are sensitive to the degree of smoothing applied; that is, how broad the bands are.

Over-smoothed functions may not capture relevant patterns in the data, while under-

smoothing can allow white noise to obscure important trends. We assessed the robustness

of trend line features against smoothing with the graphical procedure called ‘significant

zero crossing of the derivatives’ (SiZer) (Rondonotti et al. 2007; Sonderegger et al. 2009).

SiZer evaluates the shape of the fitted curve through changes in the local slope. Specifi-

cally, the first derivatives of the locally weighted regressions are calculated at different

degrees of smoothing, i.e., different band-widths. Confidence intervals for the derivative of

the function at each value of the independent variable and at each band-width are calcu-

lated as per Hannig and Marron (2006). The SiZer method then graphically displays

patterns of significance for local slope in a scale-space graph; in this case, flowering times

are on the x-axis and the band-widths are arrayed along the y-axis. At a particular time/

band-width combination, a significantly positive derivative (local slope positive) is rep-

resented by a dark grey block. Significantly negative derivatives (local slope negative) are

shown in light grey. Derivatives that cannot be distinguished from zero signify no trend in

the data and are illustrated in medium grey, while regions shown in white represent time/

band-width combinations with insufficient data. SiZer graphs of the second derivative of

the locally weighted polynomials highlight significant changes in curvature. Importantly,

the SiZer graphical framework provides guidance for separating band-widths so narrow as

to yield regressions that are uninformative because of under-smoothing, from band-widths

so broad as to smooth-over statistically significant minima/maxima (and inflection points),

i.e., band-widths that yield peaks and valleys in the locally weighted regression that

demand explanation.

The second approach to analyzing the fitness function shape used maximum likelihood

to fit parametric non-linear regression models to the data. Because the dependent variable

was a count (number of seeds) a Poisson error distribution was assumed. We used different

functional forms for the long and short season environments, as indicated by both theo-

retical expectations (Figs. 1, 2, 3) and by results of the SiZer analysis. In the short season

environment, seed production appeared to fall as an exponential decay, and so data were

fitted to the model,

Wi ¼ exp aþ mfið Þ þ ei:

In the long season treatment, SiZer indicated a maximum that was internal to the data

range. Given expectations of an asymmetrical function about this maximum, we employed

the generalized epsilon-skew-normal (GESN) function. The basic ESN model is a mixture
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of two half-normal distributions, with a skew parameter that determines the symmetry of

the two halves (Hutson 2004). Clark and Thompson (2011) developed a generalized ver-

sion of the model that can also account for kurtosis. The model is written as

Wi ¼
exp aþ f � p

b 1� sð1� pÞð Þ

� �k
" #

for f � p

exp aþ f � p

b 1þ sð1� pÞð Þ

� �k
" #

for f [ p

8
>>>>><

>>>>>:

where a denotes the intercept, p the flowering time that achieves peak fitness, and b is the

breadth of the function. When s = 0 and k = 2 (no skew or kurtosis) the model produces a

normal curve. As s becomes more negative, the left tail of the curve is drawn out. Reducing

k below 2 draws the curve into a sharper point while larger values flatten it. Clark and

Thompson (2011), who provide R code for this procedure, illustrate the large variety of

shapes that can be represented by varying s and k.

We used a hierarchical approach to assess the significance of the estimated skew and

kurtosis coefficients. First, we fitted the data to the GESN function with s and k set to 0 and

2, respectively, i.e., a Gaussian curve. Then we compared the fit (-2 Log l) of the Gaussian

curve to models estimating the two coefficients from the data. A significant improvement

in fit, determined by v2, supports the skew and kurtosis hypotheses.

There are caveats in fitting the B. rapa data to the exponential decay and the GESN

regression models. In one view, these functions can take the shapes expected in the two

environments, but in another view they impose these shapes on the data. In a short season

environment, for instance, we expect the fitness function to approach the ‘tail of zeros’ for

later flowering times when individuals vary in the critical date for last flower, T. But if

individuals are uniform for the critical date, an abrupt transition is expected. An expo-

nential decay function will smooth over any abrupt transition, should it occur. Similarly,

regression with the GESN function avoids the problem of imposing symmetry, but it can

impose a peak on the data, even when one does not exist within the data range. For these

reasons we employed a third approach.

We also fitted piecewise regressions to the fitness-flowering time data. This analysis

uses maximum likelihood to fit regression coefficients on either side of an estimated

breakpoint. Because of the Poisson error assumption the proper functional form for this

analysis is the segmented exponential decay, rather than linear:

Wi ¼
exp½aþ mfi� þ ei for f � v

exp½aþ mfi þ Dmðfi � vÞ� þ ei for f [ v

�

where v is the breakpoint between curve segments. The ‘slope’ coefficient for the left

segment is denoted by m while Dm denotes the change in the coefficient across the break

point (Toms and Lesperance 2003). Thus, a Dm significantly different from zero implies

that the right-hand segment shows a different decay rate than the left. Rather than report

Dm, we report the left- and right-hand coefficients (mL and mR) ± standard error, for a

more concrete representation of the fitness function shape. Piecewise models can be

expanded to accommodate multiple breakpoints and segments, which we did where the

SiZer analysis indicated. A sharp threshold for transition from non-zero to zero fitness

would be evidenced by a significantly negative coefficient for the penultimate segment,

followed by a zero decay coefficient for the final segment. This method can also test for a

fitness peak internal to the data, which is evidenced by a significantly positive coefficient
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rising to a breakpoint, followed by a significantly negative coefficient in the subsequent

segment—an inverted ‘‘V’’. Asymmetry in the fitness-flowering time relationship is

revealed by a z-test for the absolute values for segment coefficients. When Dm is not

significantly different from zero at any value of v, the data are better described by a simple

exponential decay.

All analyses were made using R (R Development Core Team 2008). The non-para-

metric analyses were performed with the SiZer package (Sonderegger 2011) in R 2.15.0.

The exponential decay and GESN function were fitted with the bbmle package (Bolker

and Team 2011) and the piecewise regression was performed with the segmented
package (Muggeo 2008). Although we assumed a Poisson error distribution, mean seed

count was sufficiently large (ranging from 87 to 1138, depending on population and

environment) that errors could approach a normal distribution. The analyses were repeated

assuming a normal error distribution and are presented in the Supplementary Information.

In these analyses, linear functions were used in the segmented regression. Results were

substantially the same for both sets of analyses.

Results

Selection and fitness functions in the short season environment

As predicted, directional selection favored earlier flowering time in the short growing

season treatment. Directional selection gradients in both the Lande and Arnold, and the

aster analysis approaches were significantly negative (Table 1). The positive quadratic

selection gradients suggest an overall concave curvature to the fitness function. The non-

parametric regressions produced concave, downward trend curves in fitness with increasing

flowering times in both populations (Fig. 4a, d).

In the early-flowering Back Bay population, SiZer analysis shows that even at narrow

band-widths the non-parametric regression was significantly downward over early flow-

ering times, and indistinguishable from zero at late flowering times (Fig. 4b). As band-

width increases, the negative trend extends to later flowering times, but a zero trend

Table 1 Selection gradient estimates for flowering time for both populations in both season length
treatments

Selection gradient Back bay Arboretum

Raw data Aster estimated Raw data Aster estimated

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Short season

Linear (ß) 20.387 (0.058) 20.384 (0.011) -0.196 (0.092) 20.197 (0.001)

Quadratic (c) 0.064 (0.020) 0.056 (0.002) 0.049 (0.065) 20.007 (0.0006)

Long season

Linear (ß) 0.102 (0.029) 0.102 (0.004) 20.027 (0.031) 20.027 (0.003)

Quadratic (c) -0.050 (0.018) 20.007 (0.002) 20.133 (0.025) 20.032 (0.002)

‘Raw Data’ gradients were calculated directly from observed values using the Lande and Arnold (1983)
approach, while ‘Aster Estimated’ gradients were calculated using fitness estimates from the Aster proce-
dure (Geyer et al. 2007). Bold coefficients are significantly different from zero at or beyond P = 0.002 level
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Fig. 4 Estimated fitness functions for the Back Bay (a–c) and Arboretum (d–f) populations of Brassica
rapa in the short season environment. a, d Locally weighted polynomial regressions at three band-widths
(levels of smoothing). b, e SiZer analysis graphs showing the sign of the first derivatives of locally weighted
polynomial regression, evaluated at the observed flowering times, over a range of band-widths. Dark grey
regions indicate significantly positive slope to the first derivative, light grey indicates a negative slope while
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range on the y-axis is constricted to facilitate comparison among the fitted functions. Parameter estimates
and their standard errors are given in Table 2. The quadratic regression is plotted in light grey for reference
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remains at the latest time. The SiZer graph of the second derivative of the non-parametric

regression (Fig. S2) indicates that the rate of decline decreases between the earliest and

middle flowering dates (concave curvature), but no change in rate of decline for later dates

(plateau).

The exponential decay regression (Fig. 4c; Table 2) indicated an asymptotic decline to

zero fitness at later flowering times. However, the SiZer graph suggested a potential

breakpoint beyond which seed count levels out at zero. The piecewise exponential

regression detected a significantly negative left-hand coefficient up to day 44 (Fig. 2c).

Although we expected a near-zero coefficient beyond the break point, the right-hand

coefficient was more negative (Table 2). Comparing coefficients of the two parametric

regression approaches (Table 2) shows that the piecewise procedure detected a weaker

decline in fitness with flowering up to a breakpoint than seen in the simple exponential

procedure, but the same rate of decline thereafter. The AIC value was smaller for the

piecewise analysis (Table 2), but the prediction curves of the regular and piecewise

functions were quite similar to one another (Fig. 4c) and to the non-parametric trend lines

(Fig. 4a). All are different from the quadratic relationship, plotted for reference in Fig. 4c.

The fitness function of the later-flowering Arboretum population was generally similar

to Back Bay, except in one respect. SiZer analysis revealed a significant downward trend in

the fitness function at early flowering times at all band-widths (Fig. 4d, e). A second,

narrower range for a downward fitness trend was detected at later flowering times, but only

at low to medium band-widths. The exponential decay regression function supported a

weak loss of fitness with increasing flowering times for the Arboretum population (Fig. 4e;

Table 2), but this function is uninformative about the more complex shape suggested by

the non-parametric regression. The piecewise regression, however, did indicate a more

complex shape (Fig. 4e). This analysis estimated breakpoints at days 46 and 66. The left-

hand segment had a negative coefficient, as expected, while the center segment had a

positive one. The right-hand segment had a very steep negative coefficient, which indicates

a strong exponential decay to zero. The 3-segmented fit for the Arboretum population

Table 2 Parameter estimates for fitness functions in the short season environment

Parameter Back bay Arboretum

Estimate (SE) Estimate (SE)

Exponential decay

a 8.81 (0.512) 5.50 (0.036)

m -0.10 (0.001) -0.02 (0.001)

AIC = 31,833 AIC = 38,318

Piecewise linear

a 8.11 (0.070) 8.370 (0.086)

mL -0.08 (0.002) -0.090 (0.002)

mC – – 0.158 (0.004)

mR -0.10 (0.007) -0.503 (0.027)

v1 44.30 (0.272) 50.370 (0.247)

v2 – – 66.010 (0.115)

AIC = 31,529 AIC = 35,064

All parameter estimates were significantly different from zero beyond the P = 0.001 level
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under the short growing season is the results of an appreciable number of plants with

intermediate flowering times achieving high seed production.

Selection and fitness functions in the long season environment

The Lande and Arnold and the aster analysis approaches showed that in the long

season treatment, there was strong selection for later flowering in the Back Bay pop-

ulation and very weak selection for earlier flowering in the Arboretum population

(Table 1). These results fit predictions and are biologically reasonable: the Back Bay

population has an early mean flowering time, so should be under stronger selection to

flower later under long season conditions. The Arboretum population has a later mean

flowering time, so may already be close to the supposed optimal flowering time under

the long season conditions. Negative quadratic selection gradients suggest overall

convex curvature for the fitness functions, consistent with stabilizing selection. Again

this seems reasonable since we expect an intermediate optimum flowering time under

long season conditions.

Similar to the selection gradient analysis, non-parametric regression suggested selection

for delayed flowering for the Back Bay population in the long season (Fig. 5a). Specifi-

cally, this approach showed a strong increase in fitness with flowering time over the earlier

end of the observed range of data, but little change in fitness across the later end of the

range (Fig. 5a). SiZer analysis confirms this: between days *40 and 50 the first derivatives

transition from positive to near-zero values (Fig. 5b) while second derivatives indicate

convex curvature (Fig. S2). In the GESN analysis (Table 3; Fig. 5c), the larger breadth

coefficient, b, combined with a positive skew coefficient, s, confirms that the rise to the

predicted fitness peak is far steeper than any decline at later flowering times. In contrast to

the SiZer analysis, the GESN fit produced convex curvature over early flowering times

(k \ 2). Although GESN fitted a peak internal to the data range, the piecewise regression

provides weaker support for this (Fig. 5c, Table 3); the left-hand coefficient is positive, but

the right-hand coefficient is very nearly zero. Despite the disagreements in detail among

the three regression approaches, all three support the notion that when an early-flowering

population inhabits a long season environment, fitness increases with flowering time over

the lower end of the range. The date for peak fitness predicted by the quadratic function

(plotted for comparison in Fig. 5c) is over 10 days later than those indicated by the GESN

and segmented functions.

A strong component of stabilizing selection is evident for the later-flowering Arboretum

population under the long season environment (Fig. 5d–f). SiZer analysis of the non-

parametric regressions showed a downward trend in fitness over flowering times longer

than *62 days across all band-widths, and an upward trend over earlier flowering time at

higher band-widths (Fig. 5e). Both the GESN and piecewise regressions indicate a peak at

day 61 (Table 3; Fig. 5f). Both regressions also detected the predicted asymmetry. This is

evidenced by the significantly negative skew parameter for the GESN regression and by

the significantly greater absolute value of the right-hand coefficient (z = 73, P \ 0.0001)

in the piecewise regression (Table 3; Fig. 5f). Further, the fitness function is leptokurtic, as

evidenced by the low value of k, and the significantly positive second derivatives at early

flowering times (Table S3). We note that although the mean flowering time in the popu-

lation and treatment (�f ¼ 54:5 days) precedes the fitness peak (p & 61 days), there is still

a weak downward selection gradient on flowering time (Table 1), which can be attributed

to the asymmetry of the fitness function.
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Discussion

Growing evidence suggests that flowering time can rapidly evolve in response to changing

climatic conditions (Franks et al. 2013) and as invasive species expand their ranges

(Dlugosch and Parker 2008; Colautti and Barrett 2013). In one such study we found that
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Fig. 5 Estimated fitness functions for the Back Bay (a–c) and Arboretum (d–f) populations of Brassica
rapa in the long season environment. Panels a, b, d and e as in Fig. 4. Panels c and f plot the fitted
generalized epsilon-skew-normal (dashed, dark grey) and the segmented exponential (solid, black)
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light grey for reference
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our California B. rapa populations evolved a 2–8 day acceleration in flowering time over

the course of a 5-year drought. That experiment eliminated phenotypic plasticity as a

source of flowering time change: ancestral, pre-drought generations (resurrected from

stored seed) were grown in a common garden simultaneously with their post-drought

descendents (Franks et al. 2007). The mean flowering times of the two generations

diverged. F1 hybrids from crosses between ancestors and descendents showed intermediate

flowering times, confirming an additive genetic basis for the divergence. Since the

extended drought shortened the rainy/growing season for five consecutive generations

(Franks et al. 2007), we posited that the evolutionary change was due to directional

selection for early flowering time that came with the shift from long to short growing

seasons. The present study confirms that a growing season shortened by drought does

indeed cause selection for early flowering. It also shows that extending the growing season

by continued watering reverses the direction of selection.

Other factors may impose selection on flowering time. Within-season climate trends

together with the wax and wane of pollinators and/or seed predators will change envi-

ronmental quality over the course of the population’s flowering period (Pettersson 1994;

Pilson 2000; Elzinga et al. 2007; Forrest and Thomson 2011). A plant’s flowering time thus

determines which segment of this temporally shifting environment it occupies, which in

turn impacts its fitness. The greenhouse environment for this experiment was probably less

variable over time than the natural habitats for our populations, and so the impact of the

‘time to grow-time to reproduce’ tradeoff on selection could be stronger here than in the

wild. By the same token, these experimental conditions increase our confidence that the

fitness functions we estimated were primarily shaped by the impact of growing season

length.

Selection gradient analysis (Lande and Arnold 1983) was sufficient to test the basic

prediction about the change in the direction and intensity of selection with change in the

growing season length. Aster analysis was particularly useful in estimating the selection

gradients in the short season environment, given the large number of plants with zero seed

Table 3 Parameter estimates for fitness functions in the long season environment

Parameter Back bay Arboretum

Estimate (SE) Estimate (SE)

Generalized epsilon-skew-normal

a 6.98 (0.005) 7.28 (0.006)

p 41.99 (0.002) 61.63 (0.095)

b 486.02 (40.15) 48.87 (1.209)

s 0.94 (0.004) 20.561 (0.117)

k 0.57 (0.019) 0.86 (0.025)

AIC = 71,715 AIC = 91,016

Piecewise linear

a 5.366 (0.0511) 6.309 (0.0014)

mL 0.034 (0.0013) 0.016 (0.0003)

mR 20.001 (0.0004) 20.064 (0.0007)

v 43.25 (0.1171) 61.250 (0.0969)

AIC = 71,471 AIC = 91,035

Estimates indicated in bold are nominally different from null expectation at the 0.05 significance level
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counts. Selection gradient analysis performed on the aster-estimated values produced linear

selection gradients virtually identical to those produced by selection gradient analysis on

the raw fitness values. Due to the simplicity of the aster model (based a single trait in an

annual life cycle) the selection gradient analysis using aster yielded smaller standard errors

and conflicting quadratic selection gradients. Regardless, additional statistical tools were

needed to test the more nuanced predictions about the shape of the fitness function.

Models that posit a trade-off between time allocated to vegetative growth and time

allocated to reproduction predict a greater fitness penalty for flowering too late than for

flowering too early. Plants that flower after some critical date die at season’s end without

producing viable offspring. The California populations did not provide a sufficient range of

phenotypes to span all features of the hypothesized fitness function in any one environ-

ment, but the overall shape of selection can be pieced together from the four population-

environment combinations, with each combination exhibiting a segment of a broader

fitness function (see Fig. 1b). To review, we expected: (1) an asymmetrical, convex curve

when the fitness mode lies toward the center of the phenotypic range: (2) a decelerating

upward trend in fitness when the upper end of the phenotypic range lies to the left of the

fitness function peak; and (3) a downward concave shape, ending in a ‘tail of zeros’ when

the lower end of the range lies to the right of the peak.

Expectation 1 was met for the Arboretum population in the long season environment.

All three of the regression analyses indicated that fitness was maximized by flowering at

*61 days, which was well within the observed range in flowering times. Evidence for

asymmetry included a significantly negative skew coefficient in the GESN regression, and

in the piecewise regression, by a right-hand downward coefficient that was significantly

steeper than the upward left-hand one. This makes biological sense. Plants that flower

early, flower at a small size and so have a low daily offspring production rate. But early

plants can partially compensate for the low daily rate by reproducing for more days. Plants

that flower late have a greater daily offspring production rate, but die before they can fully

capitalize on this capacity.

The Back Bay population had an earlier mean and a narrower range for flowering time.

As a result, evidence for a peaked fitness function in the long season is weak for this

population. The GESN regression imposes a peak at day 41 on these data, and in so doing,

fits a positive skew coefficient. However, the segmented regression model suggest a

breakpoint at day 43, with an essentially zero-slope line through the few points beyond this

date. Combined with the SiZer analysis of the non-parametric regression, these results are

somewhat consistent with expectation 2, i.e., a decelerating increase in fitness with

flowering time. Plants at the high end of the flowering time range in this population were

presumably near the point where the time spent amassing reproductive capacity was bal-

anced by the time spent using it.

Expectation 3—a convex decrease in fitness to a ‘tail of zeros’ when the data range is

past the fitness mode—is strongly supported by the Back Bay population in the short

season environment. By withholding water early in the experiment, the peak of the fitness

function should move to a very early date. Both the SiZer analysis and the exponential

decay regression indicate a negative trend in fitness that flattens to essentially zero at late

flowering times. Plants that flowered early in this situation had limited time for repro-

duction, while those that flowered late had none. Note that the average seed count for

plants in the short season was one-fifth of those in the long season environment, giving

further evidence for a time limitation. Although the segmented regression found a statis-

tically significant evidence for a break point, this did not correspond to an abrupt transition

from non-zero to zero fitness as predicted from flowering time models, where plants are
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identical for all features except flowering time (see Fig. 1). Rather, it more resembled the

smooth decline to zero expected for heterogeneous populations (see Fig. 3). Support for

expectation 3 in the Arboretum was complicated by a large number of intermediate

flowering individuals that achieved unexpectedly high seed production. This led to a three-

segmented fit to the data. Nevertheless, the final segment showed clear signs of a decline to

zero fitness at the latest flowering times.

Taken together, these analyses present a coherent picture of the shape of selection on

flowering time, as imposed by growing season length. They support the basic prediction

that the optimal flowering time shifts as the growing season expands or contracts. They

further illustrate how the intensity of selection on a trait depends on the position of the

phenotypic range along the underlying fitness function. The shape of the underlying fitness

function detected here has an interesting property: the population comes to a selective

equilibrium (i.e., selection is purely stabilizing) when the population mean reaches a value

that is earlier than the optimal time (see also, Mountford 1968).

There is an interesting implication of the asymmetric fitness function for the evolution

of flowering time in response to climate change. In regions where the season is shortened,

species should show a faster evolutionary response than those in regions where the season

is extended. For instance, all else equal, an abbreviated rainy season in a Mediterranean

zone may occasion rapid evolution of early flowering, while the evolution of delayed

flowering would occur more slowly in a warming boreal environment, even when the

absolute value of the shift in optimal flowering time is the same.

The modeling, experimentation and analyses we presented here illustrate what we think

is a fruitful approach to understanding mechanisms generating natural selection. When a

theoretical model predicts a specific type of relationship between phenotype and fitness,

those predictions can be tested by fitting experimental data to alternative regression

functions. We also would suggest that applying a broader array of regression models to

data from natural populations could be useful for generating new hypotheses on selection

mechanisms. The particular procedures used in the present case may or may not have wide

application, and there may be even better procedures for analyzing this experiment. The

point is that while selection gradient analysis detects the direction and intensity of

selection, there are many important questions on the causes of selection that can be

addressed only through other means.
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