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Premise of research. Variation in the overall shape (e.g., skew, modality) of the flowering schedule can
affect intra- and interspecific interactions, but full appreciation of these effects is hindered by the difficulty of
describing and comparing schedule shapes. We propose a novel approach to schedule description and com-
parison based on multivariate ordination. Unlike other methods of describing shape, ordination does not
require a priori assumptions about the nature of schedule variation and so may detect variation otherwise
unseen.

Methodology. Using illustrative data to develop the approach, we investigated chord distances and Kol-
mogorov-Smirnov distances as measures of pairwise differences in schedule shape in principal coordinates
analysis. We applied this same technique to an empirical data set and used constrained principal coordinate
analysis to determine whether variation in schedule shape in the empirical data set can be explained by other
phenological variables.

Pivotal results. Principal coordinates analysis identified biologically meaningful variation in schedule shape
in both the illustrative and empirical data sets. For both distance measures and both data sets, the first
ordination axis arranged individuals by the skew of their flowering schedule, and the second axis separated
bimodal schedules from unimodal schedules, particularly at intermediate regions on axis 1. Constrained or-
dination of the empirical data set revealed that schedule skew tended to vary with flowering duration and
timing of flowering onset and that plants producing more flowers tend to be more unimodal in their flowering
schedule.

Conclusion. Multivariate ordination successfully separated individuals according to the shape of their
flowering schedule and identified relationships between phenological variables of potential biological impor-
tance. The relationship between onset and skew, for example, could affect the realized strength of phenological
assortative mating. Ordination is a departure from function-fitting schedule description. It is broadly applicable
to other types of phenological data sets, offering, for example, a new tool for tracking phenological changes
over years.

Keywords: assortative mating, canonical analysis of principal coordinates, flowering schedule, phenology,
principal coordinates analysis.
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Introduction

The reproductive schedule is a suite of life-history traits of
profound ecological and evolutionary importance. In plants,
flowering time mediates an individual’s interactions with mu-
tualists (e.g., pollinators, seed dispersers), antagonists (e.g.,
florivores, frugivorous predators), and the abiotic environment
(e.g., frost, drought; Augspurger 1981; Campbell 1991; Ma-
horo 2003; Griffith and Watson 2005; Inouye 2008). A full
characterization of these interactions requires a quantitative
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description of phenological variation (Fox 2003). Some aspects
of phenology, including flowering onset, flowering end, du-
ration of flowering, and flowering peak, can be readily mea-
sured and compared across populations (Inouye 2008) and/or
across individuals within populations (Weis and Kossler 2004).
Others, most notably the overall temporal pattern or “shape”
of flower deployment, are more difficult to quantify and
compare.

Phenological shape is of particular interest because shape
can alter the probability of mating between individuals. Two
individuals cannot mate if their flowering schedules do not
overlap. Consequently, early-flowering individuals tend to
mate disproportionately with other early individuals and late
with late. This phenological assortative mating inflates genetic
variance of the assortative trait and correlated traits (Weis et
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Fig. 1 Bar plots depicting schedules of flower deployment for 20
simulated flowering schedules in the illustrative data set. These sched-
ules were chosen to capture a range of biologically interesting variation
in the shape of the schedule of flower deployment.

al. 2005) and can thereby modify response to selection (Fox
2003). Schedule shape, in turn, can temper the strength of
phenological assortative mating. If, for example, two individ-
uals fully overlap in their timing of flowering but differ in the
skew of their flowering schedule, mating opportunity between
them will be less than predicted by perfectly matched schedules
(Fox 2003). This cryptic component of phenological assorta-
tive mating can be detected only by comparing phenological
shapes.

The shape of the flowering schedule can also affect inter-
actions at the community level. Patterns of flower deployment
can influence resource availability to pollinators. When com-
munity flower production is bimodal, such that most flowers
are produced early or late in the season, pollinators may suffer
midseason nectar and pollen scarcity (Aldridge et al. 2011).
The prevalence and severity of bimodal flowering distributions
may increase with climate warming in some communities
(Sherry et al. 2007). To monitor these types of community
changes, a measure of phenological shape is required.

Available tools for describing and comparing phenological
shapes are all somewhat limited. Metrics such as the day of
median flowering (Buide et al. 2002) or the distance between
median flowering and the midpoint of an individual’s flowering
duration (Weis and Kossler 2004) are problematic because they
can confound shapes. In figure 1, for example, individuals A
and J would be indistinguishable by either of these metrics,
despite varying markedly in schedule shape. Modeling shape
by a function, such as exponential sine (Malo 2002), Weibull
(Brown and Mayer 1988), logistic growth (Meagher and Delph
2001), or epsilon-skew-normal curve (Clark and Thompson
2011), is similarly problematic because functions require a
priori assumptions; e.g., phenology modeled by any of these
functions is restricted to a unimodal distribution. Curve fitting
using spline functions (Moussus et al. 2010) offers flexibility
in the shape being fitted, but two phenological distributions
must be of the same overall shape for meaningful comparisons
between schedules to be made using this method.

We propose a novel approach to quantifying flowering
schedule shape based on multivariate ordination. Multivariate
ordination simplifies complex data sets (e.g., those recording
flowers per plant over a number of days) by extracting new
variables (axes) that describe principal patterns of variation in
the data set and by ordering observations in the reduced space
described by these new variables (Legendre and Legendre
1998). Similarities or differences between pairs of observations
(i.e., pairs of plants) in the original data set are summarized
in the reduced ordination space. Principal components analysis
(PCA), a multivariate ordination technique familiar to many
ecologists, preserves pairwise Euclidean distances in the orig-
inal data. We use a related technique, principal coordinates
analysis (PCoA), that accommodates a range of metric (and
in some cases semimetric) distance measures. Our goals are (1)
to develop the multivariate ordination approach in a worked
example, (2) to apply ordination to an empirical data set, and
(3) to evaluate the effects of predictor variables on schedule
shape in the empirical data set. To our knowledge, this is the
first application of multivariate ordination to the description
of phenological variation. We aim to lay out a methodological
framework for additional development.

Material and Methods

Overview of Analytical Approach

We begin with an flowering data set X, with one rown # p
for each of n plants on which flower observations have been
made and one column for each of p days of flower observa-
tions. This is typical of phenological data collected in field and
greenhouse studies (Brunet 1996; Weis and Kossler 2004; Hag-
gerty and Galloway 2010; Ishii and Harder 2012). Cell Xij is
the number of open flowers on individual i on day j of the
season; if i presented no flowers on day j, Xij p 0. From this
data set, a new distance matrix is developed, reportingn # n
the difference (“distance”) in flowering schedules between each
pair (a, b) of individuals.

We consider the calculation of distance between schedule
shapes a and b below, but in general, PCoA works well on
metric distances, i.e., those meeting the following criteria (Le-
gendre and Legendre 1998): (1) if , then distancea p b ab p
, (2) if a ( b, then distance , (3) distance ab p distance0 ab 1 0

ba, and (4) distance ab � distance bc 1 distance ac (triangle
inequality). A useful PCoA solution can sometimes be obtained
when condition 4 is violated.

In a manner similar to PCA, PCoA summarizes patterns of
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Fig. 2 Depiction of two of the 20 simulated flowering schedules
(plants B and K) when standardized for calculation of chord distances
based on 9 (A, B) and 12 (C, D) temporal bins and for calculation of
Kolmogorov-Smirnov distances (E, F).

variation in the distance matrix by extracting a series of un-
correlated axes (eigenvectors). Subsequent axes represent suc-
cessively reduced amounts of variation, with variation across
all axes summing to 100% of the variation contained in the
distance matrix when a metric distance measure is used. Up
to axes can be extracted (see Legendre and Legendren � 1
1998; Hirst and Jackson 2007 for details and examples). Be-
cause the proportion of variation explained decreases from the
first to last axis, generally only the first few axes will be in-
formative. The goal is to summarize variation associated with
many variables into these first few uncorrelated axes for graph-
ical interpretation or use in subsequent analyses.

When the original observations are plotted on the new or-
dination axes, an individual’s score along the ordination axes
quantitatively describes its flowering schedule shape. Pairs of
observations with a large pairwise distance in the dis-n # n
tance matrix will be positioned at a large distance from one
another in the reduced ordination space, and those with a small
pairwise distance will appear close together. If a metric distance
measure has been used, pairwise Euclidean distances along all
PCoA axes will equal pairwise distances in the distance matrix.

The above outlines a purely descriptive, unconstrained
PCoA; the axes extracted are those that maximize the variation
in schedule shape among observations. A related, constrained
PCoA technique, termed canonical analysis of principal co-
ordinates (CAP; Anderson and Willis 2003), can be used to
ask whether schedule shape is affected by a given set of pre-
dictor variables. CAP is analogous to constrained PCA tech-
niques such as canonical correlation analysis or discriminant
analysis (Anderson and Willis 2003). CAP begins with the
same distance matrix used in PCoA, but its solution is con-
strained to maximize the correlation between the extracted
axes and predictor variables. CAP returns a series of “con-
strained axes” equal to the number of predictors in the model
and a series of “unconstrained axes” accounting for variation
not summarized on the constrained axes. The constrained axes
may or may not correspond to the first axes identified through
PCoA, the outcome depending on whether the chosen predictor
variables correlate to the major axes of variation in the data
set (Anderson and Willis 2003). The unconstrained PCoA and
the constrained CAP analyses offer complementary views of
patterns in multivariate space, the former describing multi-
variate variation and the latter relating that variation to hy-
potheses. We ran PCoA and CAP in R (R Development Core
Team 2012), using package vegan (Oksanen et al. 2012), and
provide scripts and sample data for analysis in a supplementary
data file, available online.

Because we are seeking to describe differences in schedule
shape and not differences in traits such as onset or duration
(which can easily be quantified without multivariate ordina-
tion), we intentionally exclude for each individual observations
made before its first and after its last nonzero flower count in
calculating pairwise distances. This introduces a challenge: the
number of nonzero flower counts, i.e., the number of variables
describing schedule shape, varies from individual to individual.
Multivariate analysis of schedule shape therefore requires ei-
ther a correction to the number of variables per individual or
a distance measure that can accommodate such differences.

Illustrative Data

To characterize the ability of different distance measures to
summarize biologically important aspects of schedule shape,
we created an data set of individuals andn # p n p 20 p p

days in the flowering season (fig. 1). These 20 flowering24
schedules varied in modality (fig. 1B, 1J, 1D), skew (fig. 1E,
1F), autocorrelation (fig. 1A, 1T), and duration (fig. 1B, 1C,
1E, 1G). From these data, we calculated chord and Kolmo-
gorov-Smirnov (KS) distance matrices.

Chord distance. Chord distance is a metric distance mea-
sure that, in contrast to Euclidean distance, is not influenced
by differences between individuals in the total number of flow-
ers produced (Hirst and Jackson 2007). In spirit, chord dis-
tance compares the proportion of total flowers deployed by
one individual versus another at each time point, and it can
be thought of as Euclidean distance calculated on standardized
axes. More technical descriptions are provided by Orloci
(1967) and Legendre and Legendre (1998). Calculating chord

This content downloaded from 142.150.190.039 on January 18, 2017 12:03:34 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



AUSTEN ET AL.—DESCRIBING AND COMPARING FLOWERING SCHEDULES 73

Table 1

Summary of Three Principal Components Analysis (PCoA) Solutions on Illustrative Data

Chord 9 Chord 12 Kolmogorov-Smirnova

Eigenvalue
Percent

explained Eigenvalue
Percent

explained Eigenvalue
Percent

explained

PC1 1.99 34.6 2.10 34.2 .60 49.4
PC2 1.88 32.8 1.95 31.8 .31 25.5
PC3 .76 13.3 .61 9.9 .10 8.5
PC4 .49 8.5 .53 8.7 .07 5.5
Deviation (%)b 0 0 10.1

Note. Chord 9 and chord 12 refer to solutions calculated on chord distance matrices based on dividing flower schedules into 9 and
12 temporal bins, respectively.

a Percent variation explained for PCoA solution on Kolmogorov-Smirnov distances are adjusted to include only positive eigenvalues
when calculating the total variation explained.

b Deviation (%) is calculated as the ratio of the sum of negative eigenvalues to the sum of positive eigenvalues, multiplied by 100.

distances required a correction to differences in the number of
nonzero days describing individuals. We divided each individ-
ual’s nonzero flowering duration into q equally sized temporal
bins and summed the number of flowers occurring within bins,
replacing p days of flowering observations with q temporal
units (supplementary data file). The number of days per bin
varied from individual to individual depending on flowering
duration, but q, the number of bins per individual, was con-
stant across all plants (fig. 2A–2D). Conceptually, individuals
are plotted in q-dimensional space, with position along a given
axis equal to the proportion of flowers presented during that
time interval. Chord distance is a function of the angle between
vectors drawn from the origin to two individuals in this q-
dimensional space. Where two observations lie on the same
vector, chord distance p 0, and the maximum possible chord
distance is (Legendre and Legendre 1998). We calculated1/2q
chord distances on and temporal units. We choseq p 9 q p 12
these values by drawing histograms on the 20 simulated in-
dividuals and identifying the mode (9) and maximum (12)
number of bins selected by the algorithm of function hist( ) in
R.

Kolmogorov-Smirnov distance. We applied the two-sam-
ple KS measure to compare flowering schedules to one another
(Sokal and Rohlf 1995). The KS statistic is the maximum dis-
tance between the cumulative flower production distributions
of two individuals and is sensitive to differences in a wide
range of parameters, including skew, central tendency, and
dispersion (Sokal and Rohlf 1995). It ranges from 0 to 1.
Because the R implementation of the KS statistic is also sen-
sitive to differences in location, we range standardized obser-
vations so that each individual’s flowering period ran from 0
to 1 (fig. 2E, 2F). Unlike chord distance, KS can accommodate
differences in the number of variables (days) describing
individuals.

KS distances do not meet the triangle inequality condition
of metric distances. Consequently, not all variation in the dis-
tance matrix can be summarized by ordination. A PCoA so-
lution can nonetheless be obtained, but the first PCoA axes
will portray only the Euclidean portion of the distance matrix
(Legendre and Anderson 1999). Remaining variation that can-
not be converted to Euclidean distance is carried on later, imag-
inary, negative PCoA axes. The relative magnitude of positive

versus negative axes can be used to assess the reliability of the
solution (Podani and Miklos 2002). Alternatively, the solution
can be adjusted to remove negative eigenvalues (Legendre and
Legendre 1998).

Interpretation of PCoA solutions. We generated three
PCoA solutions: two based on chord distances ( andq p 9

) and one on KS distances. We scaled all ordinationq p 12
axes to the square root of their variance explained. We assessed
the usefulness of two-dimensional solutions by superimposing
a minimum spanning tree calculated from the original distance
matrices onto the ordination plots resulting from each solu-
tion. Crossing branches in the tree, or a lack of connection
between individuals that appear close together, would suggest
that the two-dimensional representation is not fully summa-
rizing differences among individuals. We also examined the
correlation between pairwise distances in the n # n distance
matrix and pairwise Euclidean distances along the first two
ordination axes (Legendre and Legendre 1998). Finally, for the
nonmetric KS distance measure, we assessed the Euclidean rep-
resentation of the distance matrix by examining the ratio of
the sum of negative eigenvalues to the sum of positive eigen-
values (Podani and Miklos 2002). Large ratios suggest that a
large portion of the variation in the original distance matrix
could not be represented in Euclidean space.

Application to Experimental Data

Our illustrative data set is composed of “ideal” flowering
schedules with little random variation and is designed to cap-
ture a wide range of shape variation. Empirical flowering
schedules are probably noisier, and individuals in a single pop-
ulation or experiment may not vary so much in schedule. We
therefore tested the utility of ordination for an empirical data
set.

Experimental setup. In summer 2009, we reared 206
Brassica rapa (Brassicaceae) plants in a glasshouse at the Uni-
versity of Toronto, Canada. Brassica rapa is a self-incompat-
ible annual producing an indeterminate, branched, racemose
inflorescence (Gulden et al. 2008). Seeds were planted in 164-
mL “conetainer” pots (Stuewe and Sons, Corvallis, OR) filled
with a 3 : 1 mixture of potting mix to sand. In accordance
with the goals of a larger study, we manipulated fertilizer avail-
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Fig. 3 Unconstrained ordination solutions with superimposed min-
imum spanning trees for illustrative data. Solutions are shown for
chord distances where individuals are simplified into 9-bin flowering
schedules (A) and 12-bin flowering schedules (B) and for Kolmogorov-
Smirnov (KS) distances (C). Letters in A–C refer to individuals in the
illustrative data set; ordination axes in these panels are scaled to their
proportion of variation explained. Minimum spanning trees are cal-
culated on the original distance matrix. D–F, Correlation between
pairwise distances in the distance matrix and pairwise distances on
the first two axes of each of the ordination solutions. PCoA p principal
coordinates analysis.

ability (levels “high” and “low”) and pollination (levels “no
pollination” and “full pollination”) in a factorial design.2 # 2
These manipulations add interest to this analysis because re-
source availability and pollination may affect flowering sched-
ules (Meagher and Delph 2001). Fertilizer treatment did not
affect the timing of flower bud production (bolting time; two-
sample t-test, , , ).t p 0.34 df p 203 P 1 0.7

Data collection. We recorded bolting day and the first and
last day of flowering of each plant and calculated duration by
subtracting the first flowering day from the last. Over the 82-
d flowering period, we counted fresh, nonwilted flowers per
plant every second day. Flowering schedules are thus described

in an data set, where individuals andn # p n p 206 p p 41
days on which flowers were counted. Row sums estimate total
flowers produced.

Analysis. As for our illustrative data set, we range stan-
dardized each individual’s flowering schedule, calculated pair-
wise distances, and derived major axes of schedule shape var-
iation through PCoA. We used CAP analysis to test the
hypotheses that (1) fertilizer and/or pollination treatments and
(2) other phenological characteristics, such as flowering onset
and duration, affect schedule shape. CAP solutions were de-
rived from all axes with positive eigenvalues, weighted by
eigenvalue.

Results

Illustrative Data

Substantial variation was explained on the first two axes of
all three PCoA solutions (table 1). Because of the violation of
the triangle inequality criterion, the PCoA on KS distances
returned some axes with negative eigenvalues, although their
magnitude was not large relative to that of positive axes (table
1). We adjusted the denominator in our calculation of pro-
portion of variation explained per axis to include only those
axes with positive eigenvalues (table 1).

Analyses of both chord and KS distances separated individ-
uals reasonably well, and range standardization successfully
isolated variation in schedule shape from variation in day of
flowering onset and duration (fig. 3A–3C). All three analyses,
for example, showed that individuals A and C share a similar
schedule shape despite differences in duration (fig. 3A–3C).
Both KS and chord analyses characterized differences in skew,
placing individuals E and F at opposite ends of the ordination
space. Moreover, both succeeded in distinguishing among uni-
modal, bimodal, and trimodal distributions (see relative place-
ment of individuals A, I, and D in fig. 3A–3C). Individuals
exhibiting both skew and modality (e.g., K, L) are displaced
on both axis 1 and axis 2 relative to nonskewed unimodal
(plant A) or trimodal (plant D) schedules (fig. 3A–3C). In gen-
eral, the first axis of each solution separated individuals by
the skew of their flowering schedule and the second by schedule
modality, particularly at intermediate values on axis 1. Overall,
the three PCoA solutions were fairly congruent in their relative
positioning of individuals (fig. 3A–3C).

Minimum spanning trees suggest that the two-dimensional
ordination plots represent the distance matrices well (fig. 3A–
3C). There is minimal crossing of branches in the solutions on
chord distances and none in the solution on KS distances.
Moreover, the correlation between original pairwise distances
and pairwise Euclidean distances in the reduced-ordination
space was strong for all three solutions (fig. 3D–3F).

Empirical Data

Because KS solutions were similar to the chord distance so-
lutions in our illustrative data set but do not require simpli-
fication of the original data into a fixed number of bins, we
used a KS distance matrix to describe our empirical data set.
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Fig. 4 Unconstrained ordination of Kolmogorov-Smirnov distances from an empirical data set of 206 plants. Point size is in proportion to
the relative position of observation on axis 3. Axes in the ordination plot are scaled to their proportion of variation explained. Bar plots
surrounding the central panel depict the observed flowering schedule of the observations joined to the bar plots by a line. PCoA p principal
coordinates analysis.

The first PCoA axis, explaining 32.8% of the variation in the
data set (adjusted to include only positive eigenvalues in the
denominator) again corresponded to skew (fig. 4). Correlation
between an individual’s position on this axis and its skew
measured as the third moment of the distribution was strong
( , ; skew calculated using R package mo-r p 0.92 n p 206
ments; Komsta and Novomestky 2012). The second PCoA axis
explained 10.0% of schedule shape variation and, by visual
inspection, corresponded roughly to modality, particularly at
intermediate values on axis 1 (fig. 4). Flowering schedules with
positive values on axis 1 tended to be more bimodal, while
those with more negative values tended toward unimodality.
Variation explained on axis 3 fell to 4.2%.

A superimposed minimum spanning tree on the ordination
solution (fig. A1; figs. A1–A3 available online) revealed some
crossing of branches, suggesting that the two-dimensional so-
lution was not fully capturing the variation in the original
distance matrix. However, the crossing did not much affect
the ordering of individuals on axis 1 or axis 2. Moreover, the
correlation between KS distances and Euclidean distances on
the first two PCoA axes was strong ( ,r p 0.92 n p 21,321
unique pairs of observations), showing only minor distortion
at low pairwise distances (fig. A2). The variation associated
with negative eigenvalues was 39.0%.

Neither fertilizer treatment nor pollinator treatment emerged
as important predictors of schedule shape variation in CAP
analysis (table 2). We found stronger relationships between
schedule shape and bolting date, duration, and total number
of flowers produced (table 3; fig. 5). To confirm that the pro-
portion of variation explained by these other phenological var-
iables exceeded that expected by chance, we permutated the
row (plant) order in the matrix of predictor variables, recal-
culating the CAP solution for each permutation. The variation
explained by constrained axes when the data set is in the cor-
rect order (15.8%; table 3) far exceeded that explained by
chance ( ; one-tailed t-test,mean � SE p 1.47% � 0.01% t p

, , permutations).�1106 P ! 0.01 n p 1000
The first axis of this constrained ordination correlated pos-

itively with the first axis of unconstrained PCoA ( )r p 0.99
and the second with the second ( ). Later bolting andr p 0.93
longer flowering duration were both associated with more neg-
ative values on axis 1 (i.e., more negative skew; fig. 5B). Longer
flowering duration was also associated with more negative
values on axis 2 (fig. 5B). Total flower production loaded neg-
atively on axis 2 (fig. 5B), meaning bimodality tended to be
more pronounced in plants making fewer flowers. Later bolt-
ing related positively to axis 3 of the constrained solution (table
3), but this axis contributed little to explained variation and
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Table 2

Summary of Axes Generated through Constrained
Ordination (CAP) of Kolmogorov-Smirnov Distance
Matrix of Empirical Data Using Fertilizer Treatment

and Pollination Treatment as Predictors of
Variation in Schedule Shape

CAP1a CAP2a

Constrained axes:
Fertilizer (high) �.69 �.72
Pollination (full) .71 �.70
Eigenvalue .19 .06
Percent explained 1.4 .5

Note. Total inertia p 8.01; adjusted inertia (cor-
rected for imaginary axes) p 13.13 (100%); inertia
constrained axes p 0.25 (1.9%); inertia unconstrained
axes p 12.89 (98.1%); inertia imaginary axes p
�5.12. CAP p canonical analysis of principal
coordinates.

a Reported loadings are the raw output and have
not been scaled to the proportion of variation ex-
plained by the axis.

Table 3

Summary of Axes Generated through Constrained Ordination
(CAP) of Kolmogorov-Smirnov Distance Matrix of Empirical Data
Using Day of Bolting, Flowering Duration, and Log-Transformed

Number of Flowers Produced as Predictors of
Flowering Schedule Variation

CAP1a CAP2a CAP3a

Constrained axes:
Bolting day �.347 �.252 .903
Flowering duration �.830 �.502 �.244
No. flowers (log) �.001 �.997 �.083
Eigenvalue 1.74 .28 .06
Percent explained 13.2 2.1 .4

Note. Total inertia p 8.01; adjusted inertia (corrected for imag-
inary axes) p 13.13 (100%); inertia constrained axes p 2.07 (15.8%);
inertia unconstrained axes p 11.05 (84.2%); inertia imaginary
axes p �5.12.

a Reported loadings are the raw output and have not been scaled
to the proportion of variation explained by the axis.

we were not able to discern the nature of schedule shape var-
iation along it.

Discussion

Through analysis of illustrative and empirical data, we have
demonstrated that variation in the overall shape of the flow-
ering schedule can be quantitatively summarized and inter-
preted through PCoA and can be related to variation in pre-
dictor variables through CAP. Below, we discuss the
advantages and limitations of the ordination approach and
offer an interpretation of the placement of observations in the
KS PCoA space. We discuss the CAP results in the context of
standard and cryptic assortative mating and correlated selec-
tion on phenological traits. We conclude by suggesting other
possible applications of ordination of schedule shape.

Advantages and Limitations

Schedule description through multivariate ordination can be
preferable to description through metrics, functions, or spline
fitting. This is not to say that ordination should replace these
other techniques but, rather, that it adds to the suite of tools
available. Unlike other approaches, PCoA allows the use of
various resemblance measures that do not make a priori as-
sumptions about the nature of shape variation and can there-
fore identify variation that might otherwise go undetected.
Metrics and functions, by comparison, will be useful in ex-
amining one specific component of shape, perhaps after ex-
amining total schedule variation through ordination. Similarly,
CAP provides an appropriate analytical approach to address
questions on the effects of predictors on overall shape without
a priori definition of how shape should be described.

Of course, any method can describe variation in shape only
where such variation actually exists. This seemingly trivial
point serves as a reminder that a plant must have produced
enough flowers over enough days for a shape of flower de-
ployment to emerge, and some species will therefore not be

amenable to schedule description through ordination or any
other technique.

Other limitations are particular to multivariate ordination.
First, PCoA describes variation within a given data set. Quan-
titative values for schedule shape obtained in the analysis of
one data set cannot, therefore, be directly compared to those
obtained in another. This limitation can be overcome by bring-
ing the raw data together into a single data set for PCoA and/
or CAP. The investigator may first examine whether the or-
dination plot is affected by differences in sampling effort, and
so on, between the data sets.

Second, and more important, is the challenge (and associated
advantage) of choosing the distance measure. While we found
high congruency between PCoA solutions based on chord and
KS distance matrices for our illustrative data (fig. 3A–3C),
some discrepancy between the solutions was nonetheless ap-
parent (fig. 3A–3C). Thus, the ordination solution (and, there-
fore, description of schedule shape) will vary to some degree
with the distance measure used.

We adopted the solution on KS distances because it does
not require simplifying schedules into a fixed number of bins.
KS distance, however, is semimetric, and so not all of the var-
iation captured by this measure can be expressed in Euclidean
ordination space. While negative eigenvalues associated with
semimetric distance measures can present difficulties to hy-
pothesis testing (Legendre and Anderson 1999), they do not
interfere with CAP analysis (Anderson and Willis 2003). A
semimetric distance measure can be made metric by addition
of a constant to the distance matrix (Legendre and Anderson
1999), but we found that such adjustment effectively resulted
in the same ordination of plants in the PCoA space and did
not improve our understanding of the nature of shape varia-
tion. We therefore worked with the unadjusted KS matrix. Of
course, a number of other distance measures are available, and
others could be developed. We encourage exploration of mea-
sures beyond those we have presented here.

Interpretation of PCoA Space for KS Distances
In both our illustrative and empirical data sets, KS PCoA

axis 1 corresponded to schedule skew, and axis 2 corresponded
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Fig. 5 Constrained ordination of Kolmogorov-Smirnov distance
matrix from an empirical data set of 206 plants. A, Distribution of
observations in constrained space; point size reflects relative position-
ing of observations on axis 3. B, Loading of predictor variables—day
of bolting, total number of flowers produced (log transformed), and
flowering duration—onto the first two constrained ordination axes.
Axes are scaled to the proportion of variation explained. CAP p
canonical analysis of principal coordinates.

Fig. 6 Interpretation of the unconstrained ordination space defined
by Kolmogorov-Smirnov (KS) distances. A, Because flowering schedule
skew is the largest source of pairwise distances, principle coordinates
axis 1 separates individuals by skew. B, Residual KS distances fall on
axis 2; at neutral regions on axis 1, the major source of residual KS
distance is whether the majority of observations occur at the center
or ends of a distribution, i.e., unimodality versus bimodality. At ex-
treme values on axis 1, residual KS distances are attributable to var-
iation in skew not captured on axis 1.

roughly to modality, especially at central values on axis 1 (figs.
3C, 4). Here, we offer a more nuanced interpretation. A slight
arching of the distribution of observations is evident in the
empirical ordination plot (fig. 4) and, to a lesser extent, in the
ordination of illustrative data (fig. 3C). Such arching is often
interpreted as evidence of distortion in the two-dimensional
solution due to an underlying background environmental gra-
dient (Podani and Miklos 2002). The partial alleviation of
arching in the CAP solution (fig. 5A) suggests that “environ-
mental variables”—in this case, the environment is the plant
on which the flowers have been deployed, and the variables
are other phenological parameters of this plant—may indeed
be contributing to the arching. However, the low proportion
of variation explained on axis 3, combined with a largely cor-
rect ordering of individuals on axis 1 (figs. 3C, A1) and strong
correlation between pairwise KS distances and Euclidean dis-

tances on the first two PCoA axes (fig. A2), suggests any dis-
tortion is minor. In general, as long as such arched patterns
are recognized, the appropriate interpretation can be achieved.

We suggest that the graphical outcome in the PCoA ordi-
nation also reflects the reality that some regions of the PCoA
space cannot be occupied because some schedule phenotypes
are implausible. A flowering schedule cannot, for example, be
both highly skewed and highly bimodal because the occurrence
of a valley in the flowering schedule followed by a second peak
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would reduce skew. Bimodality therefore “pushes” an obser-
vation away from extreme values on PCoA axis 1 and back
toward the center of the plot. See, for example, the relative
positioning of individuals L and H in figure 3C. Differences
in skew generate large KS distances (fig. A3). Once this major
source of variation has been accounted for on axis 1 (fig. 6A),
the next major sources of variation (summarized on axis 2)
will be modality and/or any remaining variation in skew (fig.
A3). As noted above, bimodality is most pronounced in central
regions on axis 1 (fig. 6B), with bimodality detected by the
density of flowers at the tails versus in the middle of an in-
dividual’s flowering period. At the extremes of axis 1, strong
skew precludes bimodality, and pairwise distances (and, thus,
position on axis 2) are attributed to remaining differences in
skew (fig. 6B). Pairwise KS distance owing to slight differences
in skew can, in fact, be comparable in magnitude to those
owing to differences in modality (fig. A3). We suggest that at
extreme values on axis 1, large negative values on axis 2 arise
when the shape of the peak of the flowering distribution is
slightly left skewed, and large positive values arise when the
shape of the peak is slightly right skewed (fig. 6B).

From our interpretation of the PCoA space (fig. 6), the pair-
wise distances between plants at the upper right region and
lower left region of the PCoA space should be smaller than
the Euclidean distance in this two-dimensional ordination plot
would imply. We would therefore predict that these regions
should be brought closer together on axis 3. This prediction
is confirmed in figure 4, where plotting of axis 3 via point size
reveals that these two regions are both characterized by small
values on axis 3.

The relatively low proportion of variation explained by axis
2 in the KS solution should not be taken as an indication that
axis 2 is biologically unimportant. Rather, it indicates that
variation in skew generates the largest pairwise KS distance
(fig. A3) and that this measure is very sensitive to differences
in skew. Our choice to scale the plotting axes by their pro-
portion of variation explained (figs. 3C, 4, 5A, 5B) aided in
our interpretation of the KS space. If, however, an investigator
were particularly interested in differences along axis 2 (uni-
modal vs. bimodal schedules; Aldridge et al. 2011), it would
be acceptable to consider the pattern on each axis independent
of other axes. Such scaling and interpretation would imply
that all axes of shape variation are of potentially equal bio-
logical importance. The choice of scaling depends on the goals
of a particular study (Peres-Neto and Jackson 2001).

Multivariate Nature of Phenology

Through CAP analysis, we concluded that counter to ex-
pectations, fertilizer and pollination treatments did not affect
flowering schedule shape in Brassica rapa (table 2). CAP anal-
ysis further revealed that variation in schedule shape in our
empirical data set was not independent of variation in bolting
date, duration, or total number of flowers produced (fig. 5).
In B. rapa, late-flowering plants produce more leaves along
their primary axis and therefore more axillary meristems from
which to initiate secondary inflorescences than do early-flow-

ering plants (Koornneef et al. 1991; Schranz and Osborn
2000). It could be that these architectural differences allow a
longer tail of flower deployment in later-flowering plants:
early-flowering plants simply do not have the same opportu-
nity for sustained flower production. Constraints arising from
these types of life-history trade-offs are unlikely to evolve
(Conner et al. 2011). Thus, if this hypothesis were correct, we
would expect similar relationships between bolting date and
ordination axes describing skew in other plants with similar
growth forms.

Regardless of its underlying cause, the nonindependence
among phenological variables in our data set may be biolog-
ically important. Consider again the negative correlation be-
tween day of flowering onset and CAP axis 1 (fig. 5B). This
correlation could reduce the strength of phenological assor-
tative mating relative to that arising if schedules were not
skewed or if skew varied randomly with day of flowering onset.
Conversely, a positive relationship between flowering onset
and CAP axis 1 (skew) would tend to enhance phenological
assortative mating. Given that assortative mating modifies se-
lection response (Fox 2003; Weis et al. 2005), correlations
affecting its strength will be important to the study of selection
in contemporary populations.

Further Applications of the Ordination Approach
to Phenological Data

We have used ordination to describe variation in the shape
of flower deployment schedules among plants within simulated
and experimental populations. The same approach could be
used to describe patterns of variation in flowering onset or
overall flower production among species within communities,
or among populations of a species, or among years within a
population. Through CAP, schedule variation among popu-
lations could be examined in relation to environmental vari-
ables. A data set describing several species within a community
could be analyzed to explore the effects of inflorescence ar-
chitecture and/or phylogeny on the flower deployment sched-
ule. Further applications are no doubt possible. We suggest
that the ordination approach will complement and enhance
existing methods of describing schedule shape, perhaps the
most elusive component of phenological variation.
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